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Final Report

MODELING AND COMPUTATIONAL ANALYSIS OF MULTISCALE
PHENOMENA IN FLUID-STRUCTURE INTERACTION PROBLEMS

I. Introductory Comments

is document summarizes research done during the period June 14, 1989 through
December 14, 1991 on a project aimed at the development of advanced computational

methods for modeling multiscale fluid-structure interaction phenomena.

The major thrust of the work reported is the development of the component parts of

a new family of computational schemes that could be used to study large-scale problems in
fluid-structure interaction. The overall theme of the project was the optimization of the
computational process through the development of new adaptive techniques, data

structures, a posteriori error estimates, and high-order solvers. The premise behind
studying these types of high-order methods is that, with proper data structures, they could

lead to exponential rates of convergence and thereby allow one to numerically solve very
large problems, with features covering many different physical scales, using many fewer

degreees of freedom than that required by conventional methods. In this spirit, the project
was an ambitious one for it involved developing not only new adaptive algorithms for

simulating the motion of elastic structures, but also techniques for fluid structure interaction

and for modeling various regimes of incompressible viscous flows. Presumably, these
methods could also be used to model the transition to turbulence and ultimately turbulent

boundary layers on compliant surfaces.

Particular approaches explored during this project deviated significantly from many

of the linearized or quasi-linearized approaches prevalent in the signal-processing literature.

The theme here was to explore methods which attempted a direct assault on the governing

equations. While this class of problems is exceedingly difficult, the payoff could be

substantial in that not only would very general modeling capabilities be developed, but also
very large simulations could conceivably be handled by new methodologies which were

designed to optimize the computational process.

1.1 State of the Art at Start. The current state-of-the-art in computational modeling

of large-scale subsonic flow-structure interaction problems is fairly well-known. Today a
number of large-scale computer codes are available that are typically based on finite

difference approaches. INS 3D, for example, a NASA--supported code developed for
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incompressible flow simulation uses finite difference algorithms and splitting techniques to

handle three-dimensional incompressible flow problems for Reynolds numbers of around

1,000. With the addition of various turbulence models, Reynolds numbers up to 106 or
108 can be handled, but the philosophy in resolving small-scale flow features is traditional:

detailed features of the flow are modeled by incorporation of low order schemes involving
many grid points. In complex flow calculations, the quality of a simulation is frequently
measured in terms of the number of grid points in the mesh and efficiency is guaged by the

number of iterations per grid point per second. Few of these calculations purport to model

detailed features of boundary layers or transition to turbulence. Alternatively, spectral
methods have been used in recent years with some success in modeling various turbulence
phenomena. Unfortunately, these methods are primarily restricted to simple geometries

and periodic boundary conditions and have not been used for significant interaction

calculations.

The modeling of the structure itself and the fluid-structure interface also represents a

class of problems that are at the cutting edge of computational mechanics. Contemporary
methods are incapable of capturing sufficient detail to adequately model features of

structure response that influence such phenomena as acoustics, or design of sensor
locations on moving submerged vehicles, such as submarines, within a turbulent boundary

layer. These types of modeling probems are still outside the reach of most conventional

methods..

It has been known for a number of years that in certain simple cases, such as one-

dimensional elliptic problems, a proper distribution of mesh parameters can produce

exponential convergence of numerical simulations; that is to say, with a decrease of the
mesh size or increase of the spectral order or proper location of grid points, the total

approximation error may decay exponentially as the number of degrees of freedom are
increased. This fact led to the question of whether or not a new family of algorithms could

be developed which could optimize the distribution of various mesh parameters and lead to
superaccurate methods which were capable of delivering high accuracy with very few

degrees of freedom while capturing flow features that spanned many different spatial scales

of resolution.

1.2 Goals of the Project at the Start. The research team had some experience

developing hp-type finite element methods for simple heat conduction and viscous flow
problems at the start of this project. With this background and with the possibility of high

dividends if the problem of developing high-level hp-data structures could be adequately

handled, the project was initiated and had as its initial goals the following:
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1. Data structures The development of new finite element data structures that

allow for arbitrary mesh sizes by h-refinement and arbitrary spectral orders by p-
enrichment. The data structure would have to be sufficiently general to be used in
modeling not only the fluid but also the structure and the interface, and would be able to
resolve multiple-scale features of flow phenomena through the use of hierarchical spectral-

type approximations.

2. High-order temporal schemes. Since the time-dependent case was to be also
modeled, it was necessary to develop very high-order temporal approximation schemes so
that the order of the approximation in time would balance the corresponding higher-order

approximation in space.

3. Elastic structure modeling. The same data structure used for modeling the fluid
and the fluid interface was to be configured so as to be applicable to large-scale structural

analysis as well.
4. New high-order methods for incompressible viscous flow. At the start of this

project, no adaptive h-p methods had ever been developed for large-scale incompressible

flow problems. A major goal was to also develop adaptive strategies that would
automatically produce accurate results at a specified scales.

5. Fluid-structure interface. Various techniques for modeling the motion of a solid
interface in viscous fluid had to be re-explored and adapted to these new approaches. This

involved a new look at such classical methods as arbitrary Lagrange-Euler (ALE) methods,

etc.

6. Iterative and flow solvers. It was realized at the onset for large-scale problems
many of the direct methods for solving large linear systems would not be applicable to the

subject class of problems. A parallel study on iterative solvers for large-scale h-p systems
was also initiated. Among these solvers were those applicable to unsymmetrical systems

since these occur in Navier-Stokes simulations.

7. A posteriori error estimation. The optimal control process and hp-adaptive
schemes are based on the concept of manipulating mesh parameters so as t, control the
numerical error. Consequently, very reliable techniques for a posteriori errcr estimation are
needed to drive these techniques. At the start of this project, a posteriori error estimates
were available only for relatively simple linearly elliptic problems and, except for some
very special cases, none had been developed and tested for Navicr-Stokes equations or for

general fluid structure interaction problems. The development of reliable error estimators
schemes was identified as an important goal in this research effort.
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2. Technical Approach

In the early stages of this project, attention was focused on three of the tasks listed

in the previous section:

" Development of h-p data structures and adaptive strategies
" Development of high-order solvers for the incompressible Navier-Stokes

equations

• Implementation of error estimation techniques that could be applicable

Our early work on data structures met with considerable success. A number of

papers were published on the subject, and the techniques have been the subject of

presentations at a number of national and international meetings, and extensions of the idea

are even being used in one or two commercial software packages at the present. This data
structure was, as far as is known by the author, the only data structure at the time that

allowed a genuine h-p adaptive strategy in which the mesh size h and the local order p are

actually treated as free parameters. The first such data structure was developed by the

author and his Ph.D. students and is summarized in Appendix A, which is excerpted from

a three-part paper on h-p data methods, written in 1989-90. Some of this work formed the

basis of the doctoral dissertation of W. Rachowicz and was developed jointly by the

author, L. Demkowicz, and W. Rachowicz.

The development high-order adaptive flow solvers for the Navier-Stokes equations

presented a long series of difficulties. Not only is it necessary to develop robust and

accurate, high-order time marching schemes, but also notorious difficulties with

approximating pressures in incompressible flows had to be dealt with. Here reference is
made to the so-called LBB condition in which approximations of the velocities cannot

necessarily be made independently of the pressures. A poor pressure approximation can

lead to unstable oscillations and, for higher order h-p schemes, these oscillations could be

devastating.

For these reasons, a number of new high-order methods were first investigated.
The first among these were the methods of characteristics. These schemes, based on rather

classical ideas of characteristics, are used successfully in the European aerospace industry

to solve subsonic flow problems. They are inherently low-order schemes, since they
involve effectively a splitting of the convection and diffusion steps. However, these

methods were easy to implement and were among the first to be coded and tried for two-

dimensional cases employing our newly developed h-p data structure.

Initial results were deceptively good. Quite good results for transient two-

dimensional incompressible flow problems were initially obtained. A lengthy series of
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studies of techniques for pressure approximation was also initiated. It was finally decided

that a penalty type approximation for pressures would be most appropriate for the h-p data

structure.This involved attempts at developing a strategy that would always guarantee

stable pressure approximation. As a general rule, this cannot be done with exterior penalty

formulations unless reduced integration is used. The subject of reduced integration was

studied extensively by the author from 1979 to 1982, but not for h-p approximations. This

represented new ground and proved to be an exceedingly difficult issue. Some theoretical

results were developed including a stability theorem that showed this: if a Gaussian

integration scheme of the order r is required to integrate the pressure approximation exactly,

then the use of the scheme of order r--2 will always result in a stable pressure (i.e., the

satisfaction of the LBB condition). Mathematical proof of this condition for the two-

dimensional Stokes problem was developed and numerous numerical experiments were

done. This work was never published, because some of the numerical experiments led to

data in contradiction to some of the theoretical results. Moreoever, the penalty

approximation is notoriously difficult to stabilize. It was finally decided, after a number of
months, that alternative techniques for pressure approximation should be investigated.

In addition to the method of characteristics, several new high-order methods of

characteristics were developed. These were coded, experiments were done on a number of

two-dimensional cases, and these methods were finally discarded as being expensive and

often unreliable.

In the literature of the '80s, considerable discussion was given to Galerkin least-

square methods and least-square methods for Navier-Stokes equations. A study of these

techniques was also undertaken. These were also ultimately discarded because they were

expensive, basically nonlinear in character, and often exhibited very high artificial viscosity

that tended to obliterate important physical features of the solution.

More recently, a detailed study of high-order pressure-based schemes was

undertaken. These schemes originate from a 1968 paper of A. Chorin and are perhaps the

most popular methods in use today for solving the incompressible Navier-Stokes

equations. They are based on the idea of first introducing a momentum step in which the

velocity is advanced with or without a pressure term in the momentum equation. Then a

Poisson equation for the pressure, or a pressure like variable, is solved and used to correct

the velocities. These schemes are rich in mathematical history, having been studied by not

only Chorin but also R. Temam and others. They are also the basis of a number of

commercial codes.

Despite their popularity, pressure-based schemes are essentially first order accurate

in time. There have been a number of papers that have attempted to extend these to second
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order schemes, but they have been successful only for special types of boundary

conditions. Investigators of the present project spent considerable effort in trying to

develop high order pressure based schemes. These involve the use of implicit Runge-Kutta

methods for the momentum step and the use of h-p adaptive solvers for the pressure step.

To date, it has proved to be impossible to get a reliable second-order scheme. On the other

hand, we did develop a robust first-order scheme that functions quite well on adaptive h-p

meshes. While low-order accurate in time, the scheme nevetheless formed the basis of our

numerical experimentation up until the conclusion of the project.

On another front, modeling of the elastic structure and the interface was also
investigated. A high-order adaptive h-p algorithm was developed for linear elasticity

problems. This scheme was also used in several experiments to model plates and shells
with varying degrees of success. Also, some effort was spent on exploring methods for

modeling moving interfaces. The result of these studies was a technique that was basically

an Arbitrary Lagrange-Eulerian scheme, but it did include the capability of handling h-

adaptivity. Plans were to eventually upgrade this interface scheme to h-p methods as well,

but this phase of the study was never completed because of focus of the project on other

issues.

In addition to the work on data structures and flow solvers for h-p adaptivity, a

great deal of the project focused on the development new a-posteriori error estimators. The

ability to quickly estimate the local, element-wise approximation error during the evolution

of a calculation is a key feature of any successful adaptive scheme. At the initiation of this

project, the available technology for error estimation was rather primitive being primarily

confined to ad hoc methods for h adaptivity based on estimates of gradients of density or

pressure; more rigorous techniques were successfully applied only to very limited classes

of one-dimensional elliptic problems. During early stages of the project, considerable

progress was made on the development of the error residual method, a concept first

introduced by the present team in the early '80s. This method was further developed and

applied to error estimation in linear elasticity problems and finally to Navier-Stokes

equations. A paper detailing some of the earlier work on a posteriori error estimation for

linear elliptic problems was produced early in the project and eventually implemented and

applied to the Navier-Stokes equations.
More recently, a new variant of the error residual method was derived which is

based on so-called flux balancing. It was discovered during the course of the work that the
quality of an error estimator depends very much on the ability to approximate error fluxes at

the boundaries of finite elements. Prior to this work, no error estimation technique was

kiown that would function well for arbitrary h-p meshes. The basic idea behind these
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techniques is this: the error in a gridcell depends upon the local (element-wise) residual
which is a calculable function representing the degree to which the exact solution fails to

satisfy the governing equations. In addition to this, the error is influenced by the boundary

conditions on an element, the so-called flux of error from one cell into another. The idea

behind the error residual method is to compute element residual and set up a local boundary
value problem which is solved quickly for a running account of the local error. If the

original problem is solved on a mesh for which polynomial approximation of degree p are

used in a gridcell, the error estimate was generally done by estimating the error with

polynomials of degree p or higher. Generally, a higher p was required for the error

estimator in regions of singularities, such as in separation points, changes in boundary

conditions or at point-line-singularities. It was discovered that for odd-order
approximations, a key factor in the quality of the estimate was the balance of the error

fluxes and a new technique was developed to resolve this issue. This work, recently

accepted for publication in Numerische Mathematik, provides a significant advance to the a

state-of-the-art posteriori error estimation and has proved to be successful in certain two-

dimensional calculations of unsymmetrical elliptic systems.

Finally, some additional comments should be made concerning iterative solvers and

direct solvers. A portion of the effort was spent investigating various types of iterative

solvers with the understanding that large-scale fluid structure interaction problems cannot

be efficiently handled by standard direct solvers or, induced, by direct solvers in general.
This part of the work did not lead to any new methodologies but rather an assimilation,

comparison, evaluation, and implementation of a number of existing schemes. Finally, in

much of the work we continued to use a direct frontal solver because of its robustness and

because the purpose of the early numerical experimentation was not necessarily to solve

specific large-scale problems, but to explore the efficiency and functuality of new methods.

However, we did implement and employ various iterative schemes such as the GMRES

solver, Jacobi-Block iteration and other techniques. This work should prove to be valuable

later when these techniques are extended to large-scale problems and to multi-processor

environments.

3. Progress

3.1 Successes and Failures. In summarizing the approaches outlined in the previous

section, one can point to a number of successes and a number of failures due to "blind

alleys" pursued during the project. The major successes center around three areas: the

development of new h-p adaptive strategies and data structures, the development of new
methods for solving the incompressible Navier-Stokes equations and linear elasticity
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equations using h-p adaptive solvers, and the development of a new family of a posteriori

error estimators.

As noted above, a number of the initial approaches led to " blind alleys." These

included in particular the lengthy studies of penalty approaches to h-p adaptive schemes for

Navier-Stokes, the development of high order methods of characteristics, which while

moderately successful did not appear to provide a robust foundation for further work, the

exploration of Galerkin and least-squares based methods for primitive variable

approximations of incompressible flow, and generally the development of high-order

temporal schemes for Navier-Stokes equations. Indeed, this latter area remains open and

represents one critical area in which considerable additional work needs to be done. At

present, our experimental codes function on two classes of algortihms: 1) pressure based

schemes, which employ a singly-implicit Runge-Kutta method for the momentum step, and

the full high-order two-stage Runge-Kutta methods for the entire Navier-Stokes equations.

There is no doubt that these schemes can be significantly improved with additional study.
A summary paper, including much of our work on data structures and some of our

experimentation with high-order schemes in attached in Appendix B of this report.

4. Changes: Final Approaches and Final Goals

The success with the h-p adaptive schemes throughout the project made it clear that

this is indeed a viable approach for large-scale fluid-structure interaction calculations. The

data structures originally developed in this project have undergone a number of

evolutionary changes and enough information has been gathered to produce new versions

of these schemes which should be highly effective. The error estimation techniques

developed seem to be quite promising, but additional work is needed to define their

limitations and to extend them to truly coupled problems of fluid structure interaction and to

rigorous methods of the full Navier-Stokes equations. The final stages of the project

focused primarily on the Navier-Stokes simulation since the methods developed seem to

work quite well for modeling structural response.

5. Relationship to Other Work

It should be noted that a number of the key components of the present project

overlapped with on-going work supported in a parallel ONR project on structural acoustics.
Indeed, much of the experiments developed on error estimation and on h-p data structures

proved to be invaluable in developing similar procedures for BEM techniques for structural

acoustics problems. In those problems, the primary modeling technique, however, was

based on boundary element methods and somewhat different data structures and error
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estimation techniques applied. On the other hand, experiments developed in both the fluid

structure interaction effort and in the structural acoustics effort proved to be beneficial in

each of the projects.

6. Problems Perceived

In future work, the direction toward more useful results is quite clear. Additional

work on developing robust high-order solvers that function on high-order h-p meshes

needs to be done. Continued work on pressure based schemes is intriguing and should be

continued.

During the first year of this project we developed what appears to be the first h-p

adaptive strategy and has been used successfully in the literature. This refers to a technique

applicable to arbitrary h-p meshes, which when coupled with estimates of the local error,

allows for a decision to be made whether to refine or coarsen the mesh, or enrich or de-

enrich the spectral order. This is also a key to the success of h-p adaptive methods. Much

additional work needs to be done on this subject. In 'ecent months, a number of new

adaptive strategies have been developed and have been implemented. These show in some

cases, exponential convergence of the error versus CPU time, as opposed to degrees of
freedom, and are regarded as significant advances in this subject. These methods also lend

themselves to parallelization, and the ir.plementation of these methods on parallel

processers is suggested as a fundamental and important component of any additional work

that is done on this subject.

It is believed that the basic components of an effective adaptive strategy for quite

large problems in fluid structure interaction is in hand. Future efforts should include

significant work on parallelization and, the development of load-balancing techniques for

adaptive strategies. Indeed, while h-p adaptive methods or serial computers could very

well represent the reduction of computational times by one to two orders of magnitude, the

implementation of these schemes on multi-processor platforms could very well provide an

additional order of magnitude or more in increases in efficiency.

As to major problems that are perceived, a significant problem may have to do with

the stability and conditioning of h-p methods. With the increase in spectral order, one also

finds an increase in the condition number of the underlying matrices. Progress has been

made to develop pre-conditioning methods to control the stability of these schemes, but this

is still a young area of research and much additional work needs to be done. The

parallelization and preconditioning of adaptive h-p methods would clearly represent a

fundamentally important area of study that needs to be done prior to the extension of these

technologies to significant practical problems in modeling fluid-structure interactions.
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7. Documentation

The research outlined above led to the publication of a number of articles, reports,

and papers. Also several oral presentations of the work were made at national and

international conferences and symposia. A summary of these documents and lectures is

given below.
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Oden, J.T., Bass, J.M., Huang, C-Y., and Berry, C.W., "Recent Results on Smart
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Computational Fluid Mechanics," Computers and Structures, 35(4), 1990, 381-396.

Strouboulis, T. and Oden, J.T., "A Posteriori Error Estimation of Finit Element
Approximations in Fluid Mechanics," Computer Methods in Applied Mechanics and
Engineering, 78, 1990, 201-242.

Oden, J.T., L. Demkowicz, W. Rachowicz, and T.A. Westermann, "A Posteriori Error
Analysis in Finite Elements: The Element Residual Method for Symmetrizable Problems
with Applications to Compressible Euler and Navier-Stokes Equations," Computer
Methods in Applied Mechanics and Engineering, Vol. 82, pp. 183-203, 1990.

Oden, J.T., L. Demkowicz, T. Liszka, and W. Rachowicz, "h-p Adaptive Finite Element
Methods for Compressible and Incompressible Flows," Computer Systems in Engineering,
Vol. 1, Nos. 2-4, pp. 523-534, 1990.

Oden, J.T., "Smart Algorithms and Adaptive Methods for Compressible and
Incomprdssible Flow: Optimization of the Computational Process," Very Large Scale
Computation in the 21st Century, Edited by J. P. Mesirov, SIAM Publications,
Philadelphia, Chapter 7, pp. 87-99, 1991.

Oden, J.T. and L. Demkowicz, "h-p Adaptive Finite Element Methods in Computational
Fluid Dynamics," Computer Methods in Applied Mechanics and Engineering, Vol. 89, pp.
11-40, 1991.

Oden, J.T., T. Liszka, and W. Wu, "An h-p Adaptive Finite Element Method for
Incompressible Viscous Flows," The Mathematics of Finite Element and Applications VII,
Edited by J. Whiteman, Academic Press, Ltd., London, pp. 13-54, 1991.

Oden, J.T., "Theory and Implementation of High-Order Adaptive h-p Methods for the
Analysis of Incompressible Viscous Flows," Computational Nonlinear Mechanics in
Aerospace Engineering, AIAA Progress in Aeronautics and Astronautics Series, S.N.
Atluri, ed. (in press).

Ainsworth, M. and Oden, J.T., "A Unified Approach to A Posteriori Error Estimation
Using Element Residual Methods," Numerische Mathematik, (in press).
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Oden, J.T., "Progress in Fluid-Structure Interaction," ONR Solid-Fluid Interaction
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Oden, J.T., "Adaptive Finite Element Methods in Computational Fluid Mechanics," MS C's
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in Engineering," Fourth International Conference on Computing in Civil and Building
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Oden, J.T., "Progress on Adaptive High-Order hp-Finite Element Methods in
Computational Fluid Dynamics," First U.S. National Congress, Chicago, IL, July 22-24,
1991.
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and Potential," Second SA CFD Symposium, Stellenbosch, South Africa, June 24-27,
1991.

Oden, J.T., "Toward Optimal Control in Computational Fluid Dynamics: Smart Algorithms
and Adaptive Methods," 27th Annual Meeting of the Society of Engineering Science, Santa
Fe, New Mexico, October 21-25, 1990.

Oden, J.T., "h-p Adaptive Finite Element Methods for Compressible and Incompressible
Flows," Symposium on Computational Technology for Flight Vehicles, NASA Langley
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APPENDIX A

Constrained Approximation: A General Approach to
h-p Adaptive Data Structures

In the body of this report, refrence is made to various hp-data structures developed and
studied during the course of this work. This appendix is provided to furnish some detail
on one such data structure for completeness and for reference purposes. The particular
formulation outlined here follows a paper by Demkowicz, Oden, Rachowicz, and Hardy
[CMAME, Vol. 77, pp. 79-112] and, while not the most sophisticated version in use,
provides all of the key details and features needed to understand the basic strategy.

1 h- and p-Adaptivity. Regular and Irregular Meshes

Let fQ be an open bounded domain in R', n = 2,3 with a sufficiently regular boundary O)Q.
In what follows, we shall restrict ourselves to a class of problems that can be formulated in
the following abstract form:

Find u E X such that

B(u,v)= L(v) VvEX } (

Here:

X=XxX ... x X(m times) (1.2)

where X a subspace of H1 (Q), the Sobolev space of first order, B(-,.) is a bilinear form on
X x X of the following form

B(u, v) = B,,(u,, ,) (1.3)
i,j --

where Bi(', -) are bilinear forms of scalar-valued arguments and L(-) is a linear form on X
of the form

L(v) = , (vj) (1.4)
j=i
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Finite Element Approximation

We assume that the domain Q can be represented as a union of finite elements K,, e =
1,... ,M. More precisely

M
= U~ (1.5)

and

intK fn intKf=( foreif (1.6)

Each of the elements K has a corresponding finite dimensional space of shape functions,
denoted Xh(K), for instance the space of polynomials of order p. The global finite element
space Xh consists of functions which, when restricted to element K, belong to the local
space of shape functions Xh(K). Thus the global approximation is constructed by patching
together the local shape functions in the usual way.

We shall adopt the fundamental requirement that the global approximation must be con-
tinuous. As we will see, this requirement leads to the notion of constrained approximations.
Formally, the continuity assumption guarantees that the finite element space Xh is a sub-
space of H1 (Q) and, with some additional assumptions if necessary, also a subspace of X.
The approximate problem is easily obtained from (2.1) by substituting for u and v their
approximations uh and vh:

Find uh E Xh such that

(1.7)
Bh(Uh, Vh) = Lh(vh) VVh E Xh

Here

Xh = Xh x ... x Xh(m times) (1.8)

which indicates that the same approximation has been applied to every component of u.
Bh(', .) and Lh(') denote approximations to the original bilinear and linear forms resulting
from numerical integration.

Adaptivity

A flow chart of a typical Adaptive Finite Element Method (AFEM) is shown in Fig. 1.
The method consists of first generating an initial mesh and solving for the corresponding
FEM approximate solution. Next, the error is estimated in some way and based on this
(usually crude) approximation, one adapts the mesh, i.e., adds new degrees of freedom. The
approximate problem for the new mesh is solved again and the whole procedure continues
until certain error tolerances are met. Obviously, such a procedure requires an estimate of
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the error over each element and a strategy to reduce the error by proper changes in the mesh

parameters, h and p.

In the FEM the new degrees of freedom can be added in two different ways: elements
may be locally refined or their spaces of shape functions may be enriched by incorporating
new shape functions. As noted earlier, in the case of polynomials, this is done by increasing

locally the degree of polynomials used to construct the shape functions, the first case being

an h-refinement, and the second case a p-refinement. A combination of both is an (adaptive)
h-p FEM. We remark that the process of increasing the local polynomial degrees for a fixed
mesh size is mathematically akin to increasing the spectral order of the approximation and
that, therefore, we also refer to h-p methods as "adaptive spectral-element" or "h-spectral"

methods.

Regular and Irregular Meshes

As the result of local h-refinements, irregular meshes are introduced. Recall (see [6]) that a
node is called regular if it constitutes a vertex for each of the neighboring elements; otherwise

it is irregular. If all nodes in a mesh are regular, then the mesh itself is said to be regular.
In the context of two-dimensional meshes, the maximum number of irregular nodes on an
element side is referred to as the index of irregularity. Meshes with an index of irregularity
equal one are called 1-irregular meshes. The notion can be easily generalized to the three-
dimensional case. (See [7] and literature cited therein for additional references.)

In the present work, we accept only 1-irregular meshes. In the two-dimensional context,
this translates into the requirement that a "large" neighbor of an element may have no more
than two "small" neighbors on a side; in the three-dimensional case, the number of neighbors

sharing a side may go up to four, while the number of neighbors sharing an edge can be no

more than two. This is frequently called the "two-to-one" rule (cf. [7]). Examples of regular
and irregular meshes are shown in Fig. 2. There are several practical and theoretical reasons

to accept only 1-irregular meshes, especially in the context of h-p methods. For a detailed
argument, we refer to [8].

Our restriction to 1-irregular meshes imposes a simple restriction on the way any h-
refinement can proceed: before an element is refined, a check for "larger" neighbors must be
made. If any such neighbors exist, they must be refined first and only then can the element

in question be refined.
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Read in the initial
mesh data

S Solve the discrete problem

Figure 1: Typical flow chart of an adaptive method
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(a) (b)

(c) (ad)

Figure 2: Examples of regular and irregular meshes: (a) and (b) - regular mesh; (c)
1-irregular mesh (index of irregularity = 1); (d) 2-irregular mesh.
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Continuity and Constrained Approximation

The presence of irregular nodes makes the handling of the continuity assumption non-
standard and leads to the notion of a constrained approximation. As an example, consider a
mesh of three rectangular Q2 elements (quadrilateral elements with biquadratic shape func-
tions) with standard Lagrange degrees of freedom, as shown in Fig. 3. Clearly, a function
Uh defined over these elements need not to be continuous across element interfaces due to
the presence of two irregular nodes, A and B. For instance, the values of Uh on side CDE of
element K are determined uniquely by (say) its values at points C, D and E, while those on
side CD of element K 2 are defined by specifying degrees of freedom in K. In order to make
Uh continuous, the value of uh at A from the side of K 2 must be forced to be equal to the
value of uh at A from the side of K1 , which is equivalent to the elimination of the degree of
freedom associated with point A by enforcing the constraint

Uh(A) = auh(C) +Iuh(D) + -yUh(E) (1.9)

with proper coefficients a, #i and -. The situation is much more complicated in the case of
different orders of approximation within each element, and we discuss it in detail in Section
3.

2 Constrained Approximation

In this section, we develop the general concept of constrained approximations. We shall see
in particular the impact of the constraints on such basic ingredients to the FEM as element
stiffness matrix and load vector calculations.

Approximation on the Element Level

Let K be a finite element with the corresponding space of shape functions

Xh (K).

The set QK of element degrees of freedom NK, as usual, is viewed as a set of linear functionals
defined on Xh(K). We assume that the set QK of degrees of freedom

{VOi,K : Xh(K) --+ R I i E NjK. C N} (2.1)
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Figure 3: Example of an unconstrained, discontinuous approximation.
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is Xh(K)-unisolvent (see [9, 10]), i.e.,
10 SWi,K, i E NK, are linearly independent

20 $iDAi,K, i E NK is a dual space to Xh(K)

As indicated, we assign to each linear functional PK E QK an integer label i, 0 -+- 'i,K and
denote by NK the set of such labels for element K. The element shape functions Xj,K are
defined as a dual basis to Wi,K, i.e.,

< Vi,K, Xj,K >= ij ij E VK (2.2)

and the finite element approximation Uh within the element K is of the form

Uh = : UhXi,K

iENh

where u' = (Pi,K(Uh).

In what follows, we restrict ourselves to Lagrange- and Hermite-types of degrees of
freedom. In other words, we assume that each of the functionals , is of the form

--- + D k Du( ,., k) k = 0, 1.... (2.3)

where D ku denotes the k-th order differential of u evaluated at point x (as usual, Du =
u(x)). Vectors , ,k at this point denote arbitrary vectors in R', n = 2,3. Thus, every
degree of freedom can be identified with a point x and k vectors C,.--, 4 k (Later on, in
the context of subparametric finite elements, we shall accept functionals which are linear
combinations of functionals of the form (3.3).)

Construction of the Unconstrained Finite Element Space Xh

We introduce the following formal definition of the unconstrained finite element space Xh.
A function uh: Q --- R belongs to Xh if and only if the following two conditions are satisfied:

1. The restriction of Uh to an element K belongs to the local space of shape functions,
i.e.,

Uh!K E Xh(K) VK (2.4)
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2. For every pair of elements K, and K1 and corresponding pair of degrees of freedom

WK.: Xh(K) -R

WK, Xh (Kf ) -- R1

such that WK.e and WaK, are defined by (3.3) through the same, common point x and

vectors C.... - K' the two degrees of freedom take on the same value on Uh when
restricted to K, or K 1 respectively, i.e.,

WK.(Uh IK.) = pK,(Uh x1 ) (2.5)

Note that the elements of Xh need not be continuous (see. Fig. 3).

Global Degrees of Freedom

Due to the const iction of the space Xh, we can introduce the global degrees of freedom
identified by points (nodes) x and vectors .1.... We define the linear functional 4 on

Xh,

Xh --. JR,((Uh) = PK(UhIK), (2.6)

where K is an element with the corresponding degree of freedom identified with point x and
vectors C,. - . Note that due to the definition of Xh, the global degrees of freedom are
well defined.

The Unconstrained Base Functions

The unconstrained base functions 6i are introduced as a dual basis to the space of the global

degrees of freedom, i.e.,

< lj, zi >= 6ij (2.7)

Note that 6i may be discontinuous.

Construction of the Constrained Finite Element Space Xh

At this point, somewhat arbitrarily, we divide all global degrees of freedom into two subsets:

active and constrained. We use the notation,
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" the set N' of indices assigned to active degrees of freedom and

" the set NC of indices assigned to constrained degrees of freedom

By an "active" degree of freedom, we mean one of a set of linearly independent functionals
that define the parameters associated with a global stiffness matrix for the problem at hand;
"constrained" degrees of freedom are linear combinations of active degeres of freedom defined
by constraints associated with element connectivity.

We assume that for each constrained degree of freedom (;, i E N c, there exists a set 1(i)
of corresponding active degrees of freedom, I(i) C N", and a vector Rij, j E I(i), such that
the following equality holds:

(,,,,) = (2.8)
jEl(i)

We now introduce the constrained finite element space Xh as

Xh = {uh E xh I " i (uh) = E  Rij4 j (uh) Vi E NC} (2.9)
jEI(i)I

Assuming that the constraints are linearly independent, we see that Xh is dual to the
space spanned by only active degrees of freedom. As usual, we define the base functions ej,

j E Na, as a dual basis to the set of active degrees of freedom:

ej E Xh, < I, ei >= 6 j3 i, j E N a (2.10)

Though, at this point, the choice of constrained degrees of freedom is arbitrary, we
implicitly assume that with the proper choice of constraints the resulting finite element
space Xh consists of only continuous functions.
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Relation Between Unconstrained and Constrained Base Functions

Let uh be an arbitrary function belonging to Xh. Then Uh must be of the following form:

Uh = uiE, + Eu jj
iEN- jENc

(2.11)

-Zui~j + Z > RjkUk~j
iENa jENC kEJ(j)

Introducing for every i C Na the set

S(i)={ E NC i E I(j)} (2.12)

we rewrite Uh in the form

Uh = ii ZUe+ Z Z UhRjke3
iENa kEN- jES(k)

aES~z R 1 ,(2.13)
iENO jES(i)

We claim that functions

ej = j + Y Rjij i E Na (2.14)
jES(i)

form the dual basis to functionals (Ij, i E Na. Indeed

< 4)j,ei >=< 40j, i > + Z Ri < IDj, Ek >= ij (2.15)
kES(i)

since S(i) C Nc.

Calculation of the Global Load Vector and Stiffness Matrix

For simplicity, we restrict ourselves to the case of a single equation. In the case of systems,
the same procedure is applied for every linear form (2.7) and bilinear form (2.4).
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Substituting (3.14) into both sides of (2.10), we obtain formulas for the load vector and
stiffness matrix:

Lh(ei) = Lh( ,) + E RkjLh( k) (2.16)
kES(i)

Bh(e1 , ej) = Bh( j, jj)

+ E RkB,(jk, Ej)
kES(i)

(2.17)
+ E RLiBh(Ei, ).1

IES(j)

+ z E Rk:RtjBh(Ek,&t)
kES(i) IES(j)

Element Level Revisited-Modified Element Stiffness Matrix and Load Vec-
tor

Consider an element K. Let N"(K) and NC(K) denote sets of indices corresponding to
active and constrained degrees of freedom for the element. Assuming that, as usual, the load
vector and stiffness matrix are calculated by summing up the contributions of all elements,
i.e.,

Lh(Uh) = ZLh,K(UhIK) (2.18)
K

and
Bh(uh,vh) = ,Bh,K(UhIK,VhIK) (2.19)

K

we arrive at the practical issue of how to calculate the contributions of element K to the
global load vector and stiffness matrix. Toward resolving this question, we introduce

e the usual element load vector

biK = Lh,K(Xi,K) i E N'(K) U NC(K) (2.20)
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" the element stiffness matrix

Bij,K = Bh,K(Xi,K,Xj,K) i,J E N(K) U Nc(K) (2.21)

" the set of associated active degrees of freedom for element K

N(K) = Na(K) U U I(i) (2.22)
jENc(K)

Notice that the two sets on the right-hand side of (3.22) need not be disjoint!

" the element contribution to the global load vector (modified element load vector)

bi,K = Lh,K(e[iK) i E N(K) (2.23)

• the element contribution to the global stiffness matrix (modified element stiffness ma-
trix)

Sij,= Bh,K(edIK,ejK) i,j e N(K) (2.24)
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Algorithms for the Calculation of bi,K and Bij,K

The load vector and stiffness matrix for the constrained degrees of freedom are now computed
by transformations embodied in the following sample algorithms:

FOR i E N(K)
bi,K = 0

ENDFOR
FOR i E N"(K) U Nc(K)

IF i E N-(K) THEN
bi,K = bi,K + bi,K

ENDIF
IF i E Nc(K) THEN

FOR k E I(i)
[bk,K = bk,K + Rikb,K]

ENDFOR
ENDIF

ENDFOR
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The Bij,K Algorithm

FOR i,j E N(K)
Bij,K= 0

ENDFOR

FOR ij E N-(K) U N-(K)
IF i E Na(K) AND j E Na(K) THEN

Bij,K = BTh,K + b:i,K

ENDIF

IF i E Nc(K) AND j E Na(K) THEN

FOR k E I(i)

Bkj,K = Bkj,K + RikBkj,K

ENDFOR
ENDIF
IF i E N(K) AND j E Nc(K) THEN

FOR 1 e I(j)
Bit,K = Bil,K + R3iBil,K

ENDFOR
ENDIF

IF i e Nc(K) AND j E Nc(K) THEN
FOR k e I(i), I e I(j)
Bk1,K = BkI,K + RikRjBk,K

ENDFOR
ENDIF

ENDFOR

3 An h-p Adaptive Finite Element Method

This section is devoted to a presentation of an h-p Adaptive Finite Element Method which
provides for instantaneous h- and p-refinements and unrefinements. For simplicity, the dis-
cussion is restricted to the two-dimensional case.

We shall adopt the following assumptions:

" the initial mesh is (topologically) a portion of a regular, rectangular grid in B2;

" only 1-irregular meshes are accepted for all h-refinements;
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" the local order of approximations may differ in each element;

" the approximation must be continuous.

One-Dimensional Hierarchical Element of an Arbitrary Order p

We begin our discussion with the definition of the standard one-dimensional hierarchical
master element defined on the interval [-1, 1].

The element degrees of freedom are identified with three nodes: two endpoints and the

midpoint x = 0. If the element is of the first order, only two degrees of freedom are present
- these are the nodal values at x = -1 and x = 1. Starting with p = 2, new degrees of

freedom are added which are of the form

VoP(u)- 1 du(0) (3.25)

where AP is a scaling factor.

The corresponding shape functions are illustrated in Fig. 4.

Definition of the Hierarchical Square QP Master Element

Setting K = [-1, 1] x [-1, 1], we define the space of shape functions as

Xh(K) = QP(K) (3.26)

where QP denotes the space of polynomials up to p-th order with respect to each of the
variables separately.

The degrees of freedom are defined as follows:

* function values at four vertices:

u(-1,-1), Up1,-I ), u(1,1), u(-1 1) (3.27)
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K;*tO X3 (x)

-1 01

Figure 4: One-dimensional hierarchical master element. Degrees of freedom and correspond-
ing shape functions.
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" tangential derivatives (up to a multiplicative constant) up to p-th order associated with

the midpoints of the four edges:

k 10Xk 0 -- = .. ,

Ak (1,0) k =2,...,p
Y (3.28)

A ' -k(,1) k =2,...,p

k -yk (-1,1 0) k ,.,

* mixed order derivatives associated with the central node

A A-' 0yU(0,0) k,l=2,...,p (3.29)

One can easily see that the space of the shape functions QP(K) is a tensor product of

PP[-l, 1] with itself and the degrees of freedom just introduced are simply the tensor products

of the degrees of freedom for the one-dimensional element. More precisely, if u E QP, then

u is of the form
u(x,y) = Zukvk(x)wk(y) (3.30)

k

where vk, wk E PP(-1, 1), and each of the degrees of freedom can be represented in the form

(Wpi0Wj)(u) = Euk'(Pi®0j)(vk®wk) (3.31)
k

This in particular implies that the corresponding shape functions can be identified with the

tensor products of one-dimensional shape functions, which are of the form

X,(X)Xj(Y) i,j = 0, 1,... ,p (3.32)

For ij = 0, 1, we have the usual bilinear element with four nodal degrees of freedom.
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Master Element of an Enriched Order

Let K be an element of p-th order. By adding additional shape functions corresponding
to the (p + 1)th order, together with the corresponding degrees of freedom, we obtain a
well-defined finite element whose space of shape functions includes QP. In particular, by

adding all the additional degrees of freedom corresponding to the (p + 1)th order, we pass
to the element QP+l without modifying the existing shape functions and degrees of freedom

of QP. Equivalently, we can begin an adaptive process with element QP+l and eliminate some

degrees of freedom to pass to an incomplete element of a lower order.

Subparametric Hierarchical Elements

Consider the master element of (possibly) an incomplete order p. Even though p can be

arbitrarily large, the element may be only Ql-complete, which means that some of the nodes

may be missing. An example of such an element is presented in Fig. 5. An arbitrary

location of the seven nodes in the plane (x, y) determine uniquely a map T from the master
element into R2, the components of T belonging to the incomplete Q2 space. More precisely,
if /, i = 1,.. . ,9 are the regular shape functions for the nine node biquadratic element, then

9

T(, ) = Zai( , ) (3.33)
i=1

with the assumption that a6 = !(a 2 + a3) and a7 = 1(a 3 + a4).

We have the classical definition of the subparametric element,

K = T(K) (3.34)

with the space of test functions defined as

Xh(K) = {u = f. T-1 I ft E Xh(K)} (3.35)
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and the degrees of freedom

< o, u >=< ( , fi > where u = ft o T (3.36)

Interpretation of the Degrees of Freedom

The degrees of freedom associated with vertices are simply the function values evaluated
at these points. The degrees of freedom associated with the midpoints of element edges
and central nodes are more complicated. It follows from definition (4.36) that they may be
interpreted as certain linear combinations of directional derivatives. The form of directional
or mixed derivatives appropriate for the master element is preserved only if the map T is
linear. Thus, it is understood that the degrees of freedom discussed in the previous section
should be interpreted broadly enough to include linear combinations of these Ilermite-type
degrees of freedom.

Continuity for Regular Meshes

One of the fundamental advantages of using the hierarchical shape functions is the ease
with which they allow one to construct a continuous approximation with locally variable
order of approximation. A typical situation is illustrated in Fig. 6. If elements K, and
K2 are to support polynomials of degree, say, one and three, respectively, then there arc at
least two ways to enforce continuity across the interelement boundary. One way is to add
two extra shape functions of second and third order corresponding to the middle node A of
element K1. Alternatively, the same two shape functions may be deleted from element K 2.
One can, of course, establish a "golden rule" method by adding one extra shape function
of second order to K 1, and deleting the third order shape function from K 2. In all these
cases, a common order of approximation along the interelement boundary can be enforced
by simply adding or deleting the respective shape functions from the neighboring elements.
While any of these choices can be made, the results described here employ the "maximum
rule" in which the higher-order approximation dominates lower orders. Thus, if an element
is p-refined, i.e., a higher order approximation of degree 5 is introduced, the neighbors of
lower order are enriched by the addition of extra shape functions of degree )5 necessary to
guarantee continuity of the approximation.
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Figure 6: Continuity by hierarchical shape functions.
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Constraints in the One-Dimensional Case

In the case of irregular meshes, continuity has to be enforced by means of the constrained

approximation. To fix ideas, consider the generic, one-dimensional case shown in Fig. 7.

The approximation on the small elements (-1, 01 and [0, 1] must match the approximation

on the large element [-1, 1].

We first choose the scaling factors AP in (4.25) in such a way that the corresponding
shape functions for the one-dimensional master element have the following form

X0 = (i - 0

X1 +(1 ) (3.37)
P -1I p =2,4,6,....

X () I - p = 3,5,7,...

Assume next that all degrees of freedom for the large element are active. The question
is: what degrees of freedom must the small elements take on in order that the functions

supported on the two small elements exactly coincide with shape functions of the large

element?

From the fact that (4.25) is a dual basis to (4.37), we get

Pp(Xp) 1 --p! = 1 p = 2,3... (3.38)

and therefore AP = p!.

The transformation map from [-1, 1] onto [-1,01 is of the form

1- 1 (3.39)

2 2

with inverse C = 2x + 1. This yields the following formulas for the shape functions 'X1 ,p =
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Figure 7: Derivation of the constraint coefficients.
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0,1,2,... For the (left-hand side) element [-1,0] (recall definition (4.35)).

xo(x) = -xt x(x) = x+.
tXp(X) = 1-(2x+1) P p= 2 , 4 , 6 ,... (3.40)

tXp(x) = (2x+ 1)P - (2x+ 1) p = 3,5,7,...

and the corresponding formulas for the degrees of freedom are (recall (4.36)).

<tS0, u> = u(-1)

<1 P I,u> = u(O)

S2Pp! dx( p - 23,... (3.41)

Now let u(x) (x = for the master element) be any function defined by the shape
functions on [-1, 1], i.e.,

k

tiWx E Z Cq(UXq(X) (3.42)
q=O

In order to represent u(x) for x E [-1,0] in terms of the shape functions on [-1,0], we
have to calculate the values of the degrees of freedom (4.41). We get

k< Wo, U > WO o(U) <' WO, XO > + E Vq (U) <' Po, X q >
q=1

< oU >

<1 01' u > WO M,(U <t I W1IX0 > +V1 (U) <' vi, X, > (3.43)

k

+ E Wq (U) <' W1,Xq >
q=2

_ 1 k-- lU -- Rq 1 < Oq, U >

q=2

where
t Rql <1 Wol, Xq >

= 1 ifq is even (3.44)

0 otherwise
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For p > 2,

k

< p,u > = o(u) <I O,,X0 > + 1 q(U) <' Xq >
q=1

k

= 0+ 1  Rq< Pq, u>
q=1

where

1Rqp < (Pp, Xq >

0 ( for q<p
1 (-1p+q (q1)p + q  q! (3.45)

2qt P 2q p!(q-p)! for q>_p

The same procedure applied to the right-hand side element [0,1] yields the following:

The transformation from [-1, 1] onto [0,11

1 1
x = 2 (3.46)

with inverse = 2x - 1.

The shape functions 'Xp,p = 0, 1, 2....

rXo(x) = 1 - x (3.47)

t Xi(x) = x (3.48){1 - (2x - 1)P p even

rXP(X) = (2x-1)P-(2x-1) podd (3.49)

The degrees of frccdon rop:

< "p,u> = u(o)

< r O,u> - u(1)

1 dPu(1 (3.50)

42pp! dxP
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The constraints

1 1 k
< rPo,U > - < 0,U > +I < i,u > + -TRq0 < Vq,u > (3.51)

2 2q=2

where

r 1 if q is even (3.52)
rRqo = j0 otherwise

< 1, u >=< 01, u > (3.53)

and for p > 2
k< rVP, U >=< E rRqp < (q, U > (3.54)

q=2

where

rRqp = p, Xq > (3.55)

0 for q <p

= ( (3.56)
for q~p

Arrays 1Rqp and rRqp, q,p = 0,... ,5 are presented in Fig. 8.

Constraints for 2-D Subparametric Elements

Since the shape functions for the 2-D master element are defined as tensor products of

the 1-D functions, the results for the 1-D case hold exactly in the same form in the 2-

D situation, the only difference being that the calculated constraint equations have to be

applied to the proper degrees of freedom (see Fig. 9). It follows from the dleinition of the

subparametric elements that the constraints coefficients are exactly thr same, even when

the elements have curved boundaries. This follows from the fact that the shape functions'

behavior in a subparametric element on a part of its boundary depends exclusively upon the

deformation of the part of the boundary, and therefore, any relation defined for the shape

functions in the generic situation carries over immediately to the case of two small elements

sharing an edge with a large element, so long as the deformation of the edge is identical in

all three elements. The situation is illustrated in Fig. 9.
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'Rqp = 0 -3/8 1/8

-1 6/16 -4/16 1!16
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Figure 8: The constraint coefficients for a sixth order approximation. The unfilled coefficients
are zero.
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Figure 9: Illustration of the constraints for the subparametric elements
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4 Some Details Concerning the Data Structure

In the classical FEM, elements as well as nodes are usually numbered consecutively in an
attempt to produce a minimal band within the global stiffness matrix. When the program
identifies an element to process its contribution to the global matrices, the minimal infor-
mation needed is the node numbers associated with the element. Adaptive refinement and
unrefinement algorithms require much more information on the mesh structure than the
classical assembly process.

First of all, we introduce the notion of a family. Whenever an element is refined a new
family is created. The original element is called the father of the family and the four new
elements are called its sons. Graphically, the geneology on families can be presented in a
family tree structure as illustrated in Fig. 10.

An examination of refinement and unrefinement algorithms (see [7] for details) reveals
that for a given element NEL, one must have access the following information:

" element node numbers

" element neighbors

" the tree structure information, including: the

- number of the element family

- number of the father

- numbers of sons

- refinement level (number of generation)

For a given NODE we also require,

" node coordinates

" values of the degrees of freedom associated with the node

In general, some information is stored explicitly in a data base consisting of a number of
arrays, some other information is recovered from the data base by means of simple algorithms.
A careful balance should be maintained between the amount of information stored (storage
requirements) and recovered (time).

The following is s short list of arrays used in the data base:

1. The tree structure is stored in the condensed, family-like fashion [6], [7] in two arrays
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Generation Initial Mesh Elements

0 1 2 ,

1 ons 4-.-5 6 - -8- 9 -10 1

2 Granson l 12-. 13 -- 4) 5 20--- 21-- 22-- 23

3 Greatgra~do~n 16--17- 18- 19

Figure 10: A tree structure and the natural order of elements: 4, 5, 12, 13, 14, 16, 17, 18,
19, 7, 8, 9, 10, 20, 21, 22, 23, 3.
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NSON(NRELEI)

NTREE(5,MAXNRFAM)

where NRELEI is the number of elements in the initial mesh and MAXNRFAM is the
anticipated maximum number of families. For an element NEL of the initial mesh,
NSON(NEL) contains its first son number (if there is any). For a family NFAM,
NTREE(1,NFAM) contains the number of the father of the family while the other four
entries NTREE(2:5,NFAM) are reserved for the 'first-born" sons of the sons of the
family (the first-born "grandsons" of the father).

2. The initial mesh neighbor information is stored explicitly in array

NEIG(4,NRELEI)

containing up to four neighbors for each element of the initial mesh (elements adjacent
to the boundary may have less neighbors).

3. For every active element, up to nine nicknames are stored in array

NODES(9,MAXNRELEM)

where MAXNRELEM is the anticipated maximum number of elements.

For a regular node, the nickname is defined as

NODE*100 + NORDER

where NODE is the node number and NORDER the order of approximation associated
with the node.

For an irregular node, the nickname is defined as

- NORDER

where NORDER is again the order of approximation corresponding to the node.

4. For a particular component IEL of a vector-valued solution, the corresponding degrees
of freedom are stored sequentially in array

U(MAXNRDOF,IEL)

where MAXNRDOF is the anticipated maximal number of degrees of freedom. Two
extra integer arrays are introduced to handle the information stored in array U. Array

NADRES(MAXNRNODE)
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contains for every node, NODE, the address of the first from the degrees of freedom
corresponding to NODE in array U. If K = NADRES(NODE) is such an address, the
address for the next degree of freedom can be found in

NU(K)

and so on, until NU(K)=O, which means that the last degree of freedom for a node has
been found (see [7] for a detailed discussion). The parameter MAXNRNODE above is
the anticipated maximal number of nodes.

5. The node coordinates are stored in array

XNODE

XNODE(2,MAXNRNODE)

The rest of the necessary information is reconstructed from the data structure by means of
simple algorithms. These include:

- calculation of up to eight neighbors for an element

- calculation of local coordinates of nine nodes for an element determining its ge-
ometry (the irregular nodes coordinates have to be reconstructed by interpolating
regular nodes coordinates)

- recovery of the tree-structure related information, e.g., level of refinement, the
sons numbers, etc.

- an algorithm establishing the natural order of elements

During the h and p refinements and unrefinements, both elements and nodes are created
and deleted in a rather random way. This makes it impossible to denumerate them in a
consecutive way, according to their numbers (for instance, as a result of unrefinements some
numbers may be simply missing!). Thus a new ordering of elements has to be introduced
which is based on some scheme other than an element numbers criterion. In the code
discussed here, we use "the natural order of elements" based on the initial mesh elements
ordering and the tree structure. The concept is illustrated in Fig. 10. One has to basically
follow the tree of elements obeying the order of elements in the initial mesh and the order
of sons in a family.

The natural order of elements may serve as a basis for defining an order for nodes and,
consequently, for degrees of freedom, when necessary.

For a detailed discussion of the data structure as well as a critical review of different data
structures in context of different h-refinement techniques, we refer again to [7].
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APPENDIX B
Theory and Implementation of High-Order Adaptive
hp-Methods for the Analysis of Incompressible Flows

1 Introduction

This appendix is presented as a summary of some approaches and some early numerical
results on h-p methods for incompressible flows. The appendix is based on a forthcoming
paper by J. T. Oden, with the same title as that above, that is to appear in Computational
Nonlinear Mechanics in Aerospace Engineering, a volume in the "AIAA Progress in
Aeronautics and Astronautics."

It is worth re-emphasizing the strategy behind the uses of hp-methodology. In impor-
tant CFD circles, the inadequacy of contemporary computing devices for handling realistic
three-dimensional flow simulations is frequently presented as justification for research on
and development of larger and faster computations and concomitant larger budgets for com-
puting. While few will argue against the need for bigger and better hardware, and we shall
certainly not do that here, the premise for many of these widely published projections is
rooted in the jargon of traditional, lower-order, finite difference approaches for structured
meshes. A typical scenario is this:

Number of Grid
Problem Class Points Required Computer Class

" 3D Steady Viscous Flow 105 - 106 VI
" Reynolds Averaged Navier-Stokes 107 30 x VI
" Large Eddy Simulations 109 3 x 10 x VI
* Full Navier-Stokes 1012 - 1015 3 x 109 x VI

Here "Class VI" refers to a sixth-generation supercomputer, such as a CRAY YMP, and
"3 x 10' x VI" suggests that machines with a billion times the speed and storage of today's
supercomputers will be needed to resolve flow features of interest in high Reynolds-number
flows.

Of course, these figures are very rough and one can argue over the location of decimal
points here or there, but they do indeed highlight the enormous challenge facing future ad-
vances of computational fluid dynamics. This challenge is real and is not at all at issue; what
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is at issue is the notion that flow features must be resolved by merely adding and handling
more gridpoints. This terminology suggests that the driving factor governing research on
CFD is only the performance of the computing device itself and that the algorithms to be
implemented on these devices will continue to be versions of the fixed gridpoint methods
that have been popular in CFD for decades.

An alternative philosophy is to also look toward the development of new algorithms for
CFD that are designed to streamline and optimize the computational process. These include
"smart algorithms," which change in structure and performance during a flow calculation to
accommodate changing properties of the solution. In particular, they include adaptive finite
element methods, which are designed to adjust mesh parameters so as to control numerical
error. Importantly, they include so-called h, p, and r-adaptive schemes which dynamically
change the mesh size h, the local spectral order p, and the relocation r of gridpoints so as
to deliver very high accuracies with near-minimal numbers of degrees-of-freedom.

Such adaptive methods need not function on structured meshes. Most importantly, they
can, and generally do, produce exponentially-convergent approximations, meaning that such
adaptive methods can produce results of a given accuracy using many orders-of-magnitude
fewer degrees of freedom than that required by conventional approaches. Thus, flow features
are not resolved by heuristically adding gridpoints where the analyst thinks they may be
needed, but rather by automatically distributing element sizes and spectral orders in a way
designed to produce results with a preset level of accuracy.

A remarkable by-product of these approaches is the calculation of estimates of the local
(elementwise) error in the approximation. For example, to control the computational process,
the calculated flowfield may be used to derive element residuals, and these residuals can be
used to calculate estimates of error in appropriate norms. The quality and sophistication
of existing estimation methods vary, but they have proven to be invaluable in giving the
analyst an independent measure of the reliability of his calculation. Also, they provide a
rational alternative to judging the convergence of a flow calculation by simply monitoring
the change in results due to successive refinements.

While recognition of the significant potential of adaptive hp-methods is increasing in the
CFD community, many research issues remain to be resolved. The present paper outlines a
class of adaptive hp-methods for incompressible viscous flow problems and discusses results
on the development of hp-strategies, error estimators, higher-order flow solvers, and results of
representative numerical experiments. This work continues our study of adaptive techniques
initiated in the early 1980s for both compressible and incompressible flow simulations.

Work on hp-adaptive methods in computational fluid dynamics began in 1983 and 1984
(see [1,2]) and originally focused on two-dimensional steady, viscous incompressible flow.
Improvements in techniques for error estimation and in hp-data structures led to extensions
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to compressible flow problems (e.g., [3-8]); for surveys on general adaptive finite element

methods, see [9-111. Smart algorithms and adaptive methods in CFD are discussed in [12-

16]. An overview of h- and h-p finite element methods for elliptic problems is given in

[17].

hp-finite element methods share features of standard fixed-order finite element methods

and of spectral methods, both of which have a long history. For a history of finite element

methods, see [18]. Global spectral methods, of course, data back to the nineteenth century

and were used in a weak or variational setting by Ritz [19] in 1908, Galerkin [20] in 1915, and

Kantorovich and Krylov [21] in 1936. The idea of using spectral approximations for finite

element methods, with or without collocation, appeared very early in the finite element

literature (see, e.g., [21]). The idea of using exact or high-order representations of functions

over a regular subdomain and to then patch these subdomains together to produce a global

model was the forerunner to "more practical" finite element methods based on low-order

approximations and finer meshes. The problem was with interface conditions-how could

these high-order spectral representations be effectively matched together?

The interface issue was rather trivially solved when only low-order conforming polyno-

mial approximations were employed, and this fact led to the development of traditional and

highly successful finite element schemes. The resurrection of high-order schemes within a
finite element context came with the pioneering work of Szabo and his collaborators (e.g.

[23-28]) on the p-version of the finite element method. There the notion of hierarchical fam-
ilies of polynomials on triangular meshes was developed, which simultaneously resolved the
interface problem and led to techniques which produced remarkable accuracy for classes of

elliptic problems in linear elasticity. The mathematical properties of p-version finite elements
has been studied by Babu~ka, Szabo, and others [17,24,29-35] and is now a widely-accepted

approach for solving problems ;n linear elasticity and in other areas. The spectral element

methods developed by Patera and Maday and their colleagues (e.g., 136-40]) are, in fact,

closely related to p-versions of the finite element technique. In this technique, Chebyschev

polynomials and either collocatioin or Galerkin/Gauss-Lobbatto quadratures are used to

produce high-order local spectral approximations on a fixed mesh. Interface conditions are

enforced by point matching at boundary collocation points or by using a "weak" continu-

ity condition in which interelement continuity is enforced by an P-projection of traces of
functions on neighboring elements onto their common boundary.

A general approach to hp-adaptive methods was developed in a series of papers by Oden,

Demkowicz, Rachowicz, and others, see [41-43]. There a general data structure, constructed

on quadrilateral or hexahedral meshes, was developed which provided for irregular h refine-
ments and p enrichments. An adaptive strategy is also given in these works together with a

mesh optimization scheme designed to choose an acceptable sequence of h or p refinements

to yield an optimal nonuniform hp mesh. An extension of several aspects of these works is
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given in the present paper.

Following this Introduction, mathematical preliminaries, notations, and weak forms of the
Navier-Stokes equations are given in Section 2. General properties of hp-finite element spaces
are established in Section 3, and hp-finite element models of the Navier-Stokes equations
are developed in Section 4. There we also discuss penalty approximations of the pressure
and incompressibility constraint, which are used in developing higher-order flow solvers.
Several high-order semi-implicit solvers are discussed in Section 5 and error estimation and
adaptivity techniques are discussed in Section 6. Section 7 contains the results of several
numerical experiments.

2 PRELIMINARIES

In this section, we record preliminary notations and problem definition for future refer-

ence.

2.1 The Governing Equations

We begin with the description of the flow of a viscous incompressible fluid embodied in the

following problem:
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Given an open bounded domain 1 C Rn, n "- 2 or 3, data
(fU,g, uo) and time interval [0, T], find a velocity field u -

u(x,t) and a pressure P = P(x,t), x, = (xI,x 2,.. ,xn) E
t E [0, T], such that

ut + u. Vu- 2vV. D(u) + VP = f )in
V~u=O5 in~(O,T]V'.u=Ol

(2.1)

u(:, 0) = uo(x) in

U (S,t) = i(s,t),
s E r', t E [o,T]

o(u, P) . n(s, t) = g(s, t),
s E F2, t E [0, T]

Here the following notations and conventions are used:
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OU

Utt

D(u) (Vu + VuT) = the strain rate tensor

v - p/p = the kinematic viscousity, p being the constant viscosity
and p the density of the fluid

P p/p = the kinematic pressure; p being the hydrostatic pressure

f = f(*,t) = -/p = the body force per unit volume, J being the
body force density

Uo = uo(x) = the initial velocity distribution

U = U(s, t) = prescribed velocity on a portion F 1 of the boundary

0Q of 2:
X E 0f? ==> x = a?(s), FI' C 8

uy(u, P) = the (density-weighted) Cauchy stress tensor = p(2vD(u)-P1),
1 being the unit tensor

n = a unit exterior normal to aQ

g = g(s, t) = prescribed traction on F 2 C OQ,

O9 = F 1 U F2 , F1 fl F2 = 0

Remarks:

2.1) The' boundary and initial data must satisfy certain compatibility conditions if (2.1)
is to represent a well-posed problem. In particular, we must have

V. u0 = 0 and u0 = i(s,0) on F1

J uo - n ds = 0

We demand that meas Fi > 0 or Fi = 0, i = 1,2, then, if F2 = 0, -i must satisfy,

Iri n d= 0 tE [0, T]

2.2) Boundary conditions other than those given in (2.1) can be incorporated into the
analysis. See, e.g., [44]. U

2.2 Weak Formulations

To recast (2.1) into a functional setting, we introduce the following notations:
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Spaces

V = {v=v(x) E(H'(fl))Iov=Oon r}1

H = {vEVldivvv=Oinfl} (2.2)

M = {qEL2(f)Ifqdx=OifF2 =0}

When the domain of functions needs emphasis, we will also use the notations V =V(),

H = H(fl), and M = M(fl). We also introduce the norms,

IlVII'n = j(VV vv+v .v)dx,

n

IIjIIq = J q2dX, = V1IVill2(O), r > 1, etc.
i=1

Forms

a: VxV-+1

a(u, v) = n 2vD(u) : D(v) dx

b: VxM-.JR

b(v,q) =jin q divv dx

(2.3)
c: VxVxV~JI?

c(u,v ; w)= (u. Vv).w dx

L: V---R

L(v) = (f, v) + f g " v ds

Here H 1(Q) is the usual Sobolev space of functions with L 2-distributional derivatives defined
on fl, -to is the trace map of (H 1 (fl)) m functions onto af? (-yov = vjqs, v E (C, (-Q))n,

and we shall simply write -fov = v unless confusion is likely), and (f,v) = fo f v dx,

dx = dxldx2 ... dx,n. Here also the notations A : B = E ,1 AijBij and a • A • b = X:n

aiAijbj are used for tensors A, B and vectors a, b. A weak formulation of (2.1) can now be
presented as follows:
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Given f E L2 (O, T; L2 (Q)),g E L2 (O, T; L2 (F2)), uo E H,
and fi E (H1 (f2))n, fir, = V, find u = fi + L2 (0, T; V)

and P E L2 (O, T; M), u(O) = Uo, such that

(2.4)
(utv)+c(u,u;v)+a(u,v)-b(v,P) = L(v)

b(u,q) = 0
V (v,q)EV x M

Conditions on the regularity of the data (f, g, U0, -i) can, of course, be weakened; see Temam

[45].

The Stokes problem arises as a special case of (2.4) when ut = 0 and the convection term

c(. , ; .) is dropped:

Find

(u,P) e V x M:

a(u, v) - b(v,P) = L(v) (2.5)

b(u, q) = 0

V (v,q) E V x M

2.3 Weak Forms on Partitions of Q

It is convenient to also define weak formulations of the Navier-Stokes equations on partitions

of fl. Let Qh denote a family of partitions Th of f2 into subdomains K:

= U{KeThl, Kfnj=FKJ VK,JE7h
h>0

hK=dia(K), h= sup hK, ThE Qh
KETh

56



We denote by V(K), H(K), and M(K) the spaces of restrictions of functions in V, I, and
M, respectively, to subdomain K. Let aK(., -), bK(-,-), c-(.,. ; .), and LK(-) denote forms
analogous to (2.3) defined on these restricted spaces; i.e.,

aK(U, V) =K 2vD(u): D(v) dx

bK(v,q) =/Kq div v dx

(2.6)
cK(U,v; w) = IK(u. Vv) w dx

LK(v) = (f,V)K + I 2nK g . v ds

with (f, V)K = fK f" v dx. Then a(u, v) = KETh aK(u, v), b (v, q) = EKET, bK(v, q),
etc., and the weak form of the Navier-Stokes equations for a typical subdomain K assumes
the form,

Find UK E L 2(O, T; V(K)), PK E L 2(O, T; M(K)) such that

(uKt, v)K + CK (UK, UK; V) + aK (UK, v)

bK (V, PK) = LK(V) + JK\ V (UK, PK) nKds

b(uK, q) = 0 (2.7)

V v E V(K), V q E M(K)

UK(O) = UOIK(0) , UK = on L'flO9K

for given data (f ,g, uo, V), nK being the unit exterior normal to OK.

We construct approximations of (2.4) by using hp-approximations of the spaces V and Al in

Section 4.
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3 hp FINITE ELEMENT APPROXIMATIONS

We now take up the fundamental issue of constructing hp-finite element approximations

of the spaces V, H, and M and V(K), H(K), and M(K).

3.1 Shape Functions

To simplify the discussion, we begin with the two-dimensional case illustrated in Fig. 1.

There we see the domain 0 partitioned into a mesh of elements K each of which is the image

of a master element K under a smooth invertible map FK:

= (xI,x 2 ) = FK ), t = (6,2)

Let
K =[11] x [-1, 1]

We next record properties of special shape functions on Ff.

Lemma 3.1. Let E [-1, 11 and denote
()= (2 -l)/ P [j

2i 12 Pi-,(s)ds j>2

(3.1)
1

=- (Pj() -Pj- 2())V/2(2i - 1)

where Pj( ) is the Legendre polynomial of degree j. Then

W, E P.([-1, 1]) = the space of polynomials of degree j on [-1, 11

wo(±1) = 0

[(2j+ l)-1 +(2j-3)-]/2(2j-1) if j=k

-(2j+1)-'/2[(2j-1)(2j+2)]! if j=k-2

(Wj, Wk) = (3.2)- (2j - 3)- / 2 [(2j - 1)(2j - 5)]! if j = k +2

0 if otherwise

[(2j-1)/2]/(2j -1) if j = k

0 if otherwise
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where (,a) = f ' od .
Proof: These results follow from well-known properties of Legendre polynomials. See [46]

and, particularly, [47]. I

With these notations in hand, we define the master element shape functions in three

groups:

Node Functions. These are the standard bilinear shape functions

x(77)= 1(1 ±-)(1 ±r) , A= 1,2,3,4 (3.3)

Side Functions. On each side rA of the boundary oK of K, we define

1,k 1

Xo(77) = (1 + 7)Vk( )

x , ) = (1 - 77)ck(r) (3.4)

xo 4, r)= 7(1 + )ok(7)

k = 2,73,..p

Bubble Functions. Internally, we define functions which vanish on OK by

X'(,7) = j()k() W2 j,k (7 p (3.5)

The space QP (k) of master element shape functions now defined by

QP (k) =span {xA, X,X8K  : 1 < r,A < 4, 2 <_ j,k < p} (3.6)
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In three dimensions, similar choices of shape functions are used except that there it is
convenient to decompose the set into edge and face functions as well (see Fig. 2). For
instance, for K = [-1, 1]3, = , 77 = 2, C = , we have

3D Node Functions

XA 1 0:00:77)(1 A = 1,2,-.,8 (3.7)

Edge Functions

x1,k( OCk = 0(1 + 0(1 + C)k(')

1 1

X k ( ,7,C) = (1 + 0(1 - ),,(,7)4 
(3.8)

k =1X12,k (,Cr7,) = 4 (1 - 0)(1 - 77)Wok(O'

k = 2131-1.,p

Face Functions
X~( r, ) (1 + C)XB k(77,)

xk(,,C) = 2 - (,

: C(3.9)

x ,C, 77, ) = (-Xj( ,,71

2 < j, k < p

Bubble Functions

77, C ) = O( (77) We() (3.10)2 i j,k,e < p
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Figure 2: Nodal, edge, facial, and interior (bubble function) degree-of-freedom locations on
a master element in three dimensions and a parametric image of the element in a curvilinear
mesh.
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Then we denote the space of master element shape functions by

QP(K)=span {x,X E a, Xe ,X : I < A < 8,1< E <12,1< F < 6,2 < J,k,t < p}

(3.11)
Denote dim QP(K) = = (p + 1)2. Then each i E QP(K) representable in the form

with b the (relabeled) shape functions defining the basis of QP(k).

3.2 Subparametric Maps

Returning to the case (3.3) for convenience, we choose for the element maps FK the sub-
parametric functions,

x= FK(F) = 77)

4 4 S (3.12)1( '77)+ gk XIk I,

A=1 r=1 k=2

where aK is a constant translation vector, x2 A = (xf , xA) are the coordinates of node (vertex)
A of element K, and mA = (x, x) are the coordinates of points interior to the edges FA

of K. Often we take only S = 2 so that element geometry is modeled using subparametric
quadratic approximation of curvilinear boundaries.

3.3 h-p Meshes and Data Structure

The element shape functions described above are hierarchical, meaning that the parameter p
can be increased or decreased with the result that the associated element matrices for p = p,
are always submatrices for p = P2, P2 > PI. We also treat the mesh size h (hK = dia(K))
as a parameter by employing standard h-adaptive techniques for bisection of elements dis-
cussed, for example, in [4]. Conformity of shape functions across interelement boundaries
is accomplished using constraint approximations of the type introduced in [41]. The basic
ideas are summarized as follows:
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1. Let Th E Qh be a partition of fl into M = M(h) elements KJ = U{K E T }. Let
ShP(K) denote the space of local finite element functions defined over element K,

( N
Shp (K) =jv = v(z) = Zi~j4'j(x)I K E Th,

i= 1

x' E K, i,=,oFj', =, E (),

P3, ERI

where QP(K) is defined in (3.6).

2. Let E(K) = (Shp(K))' denote the space of degrees-of-freedom corresponding to
ShP(K); i.e., E(K) can be identified as the dual space of Shp(K) so that E(K) contains
linear functionals q(. In particular, the functionals qk can be chosen to be a dual basis
to the basis functions 4i E Shp(K):

(q , , ) = , 1 < i,j < N

where (.,.) denotes duality pairing on E(K) X Shp(K). Then, if

v E ShP(K)

N

v(X) = V'¢k(w)
i=1

we must have

v' = q;(v) = (& v)

The functionals qk (the degrees-of-freedom) consist of nodal values,

qk(u) = u "") A = 1,2,3,4

and directional derivatives at the sides rA or mixed derivatives at the centroid of K;
e.g., q:~ ~ u---- D (ZA)(K ..) , k =0,1,.-.

where D' u is the k-th order differential of u.

3. The space X(Q) of unconstrained degrees of freedom consists of the set of functions
uh: --+ R such that

i) UhIK E ShP(K) V K E Th
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and

ii) for every pair of elements K, J E Th sharing a node x' E K n J, and every
pair of degrees of freedom,

q- E E(K), qj E E(J) with

qK(U) = qj(u) = D'u (3,A) (,1,,2,

k , 1,=.o , we have
qK(UIK) = qj(ulj)

4. The global degrees of freedom E(fl) are linear functionals on X(11):

F: x(!Q) -+ R, r(u) = qK(uIK)

and the (discontinuous) global base functions k are defined so that

N = dim X(nl).

5. Now a conforming set of finite element basis functions X are obtained by imposing
continuity constraints. For this purpose, we partition the degrees of freedom into sets
Na and N' of active and constrained (indices of) degrees of freedom, respectively.
Then, for each constrained degree of freedom E', i E NC, there is a set I(i) C N a such
that (see [41])

F2 (Uh) = Z RYj(Uh)

where R. defines the Bookean map of active into constrained sets. For I, the entries

are rational numbers the exact nature of which depends upon the h-adaptive strategy.

The final global finite element space is then

XhP(n) = {Vh E Y =Ei( Ih) -  R j E j (vh), V i E Nc}

= span {Xi}
(3.13)

x,(x) = (z) + : j, Na
jES(i)

S(i) = {j E Nc[i E I(j)}
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3.4 The hp-Finite Element Spaces

The construction outlined in the previous subsection leads to the definition of families of
finite-dimensional spaces of functions of the type (for the two-dimensional case)

xhp(Q) C H'(Q), =U {K E Th}

Xhp(Q) = v E C°() I VI,. Shp (3.14)

Mhp(f2) = q L2(Q?) I qIK F Shp (K) ®@Ek~K
k=1

We use the notations:

PK = the order of the highest-degree complete polynomial rep-
resented in the shape functions defined on element K

EK(OK) = the spaces of functions of the type (3.4) defined on the
edges Fk of K which are introduced to fulfill continuity
requirements across element boundaries

Thus, for a typical constrained element K in the mesh, such as is shown in Fig. 3, continuity
of the global basis functions is maintained by enriching the edge functions of K to match
the highest order polynomial experienced on the common interelement boundary. When
adjoining element edge functions are polynomials of different degree, the edge functions on
common boundaries are enriched by the addition of edge functions of a degree equal to
the largest polynomial degree of any element sharing that edge. Thus, for the hp-mesh
shown in Fig. 4, shape functions of a given degree may overlap those of adjacent elements
which support lower degree shape functions. This is illustrated in the color-coded figure by
colored patches extending over common element edges. In three-dimensional hp-meshes, the
implementation of this strategy requires also the addition of element edge functions as well.
Once continuity is established, the highest order of complete polynomials contained in the
element is denoted PK.

Typical interpolation properties of hp-spaces are indicated in the following:

Proposition 3.1. Consider a mesh Th of elements K which are affine equivalent to a
master element K, with

k=[-,1]2 ,N=U{K ETh} , FK: k-4K
(3.15)

K D X = TKi+ aK
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Figure 3: Illustration of the addition of edge polynomials at constrained edges so as to
enforce continuity of the basis functions across interelement boundaries.
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Figure 4: Color-coded nonuniform hp-mesh.
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TK being an invertible (constant) matrix and aK a translation vector. Let

PK = sup { dia S I S = sphere contained in K}

hK = dia (K)

and suppose

hK < a = const. V K E Th

PK

Then, given any function u E H'(K), there exists a sequence of interpolants whp E PK(K),

the space of polynomials of degree < PK defined on K, PK = 1,2,..., and a constant C,
independent of u, PK, or hK, such that for any s, 0 < s < r,

U - W,,C, (3.16)

where

ys = min (pK + 1,r) (3.17)

Proof: See, for example, [17]. I

Returning to (2.1), we assume that Q is such that families of spaces Vhp(Q), Alh'() can
be constructed such that

1. V"( ) = (Xhp()) n C V()
(3.18)

Mh,(Q) C M(Q)

2. v E vw() n(H r(!))n, 3 hp E VhP(Q)

such that

c h_ --  (3.19)

3. V q"' E Mho(Q), (3.16) holds with PK replaced by SK
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4 FINITE ELEMENT FORMULATIONS

4.1 hp-Element Strategies

A semi-discrete hp-finite element approximation of the Navier-Stokes equations consists of

seeking velocity and pressure approximations

uhP(t) E VhP(fp) , phS(t) E MAhs(fl)

for t E [0, T] such that

( hp (t), X) + C(Uhp(t), Uhp(t); X)
+a (uhp(t),X) - b(X, PhS(t)) = L(x) (4.1)

b (Uhp (t), W) = 0

V X E VhP(Q), V E Mh(q)

where Vhp(Q) and Mhs(SI) are defined in (3.18).

To proceed further, the following issues must be resolved:

i) Temporal Approximation; the discretization of [0, T] and the method of approximating

the time-variation of u hP and phs.

ii) Convection Terms; methods for handling the nonlinear convection effects embodied in

the form c(. , • ; .).

iii) Pressure Approximations; methods for constructing stable approximations on hp-

meshes.

iv) Diffusion Terms; methods for handling the diffusion terms, a(.,

In the present exposition, these issues are dealt with as follows:

i) High-Order, Semi-Implicit Splitting Schemes. High-order temporal approximations
are introduced to balance the high-order spatial approximations possible in adaptive hp-

methods. Splitting methods are used so that convection steps are handled using explicit (or
"weakly" implicit) methods, whilst diffusion steps are handled by a linear (parallelizable)

implicit step. These are discussed in Section 5.

ii) Exterior Penalty with Pressure Correction. A non-singular, perturbed Lagrangian

method is used to approximate element pressures which is essentially a regularized, dis-
continuous, exterior-penalty type approximation of the pressure P. In this way, the local
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spectral orders s of the element pressures are determined by the quadrature rule chosen

to integrate the bilinear form b(. , .). The regularization (penalty) parameter E = SK- de-

pends upon hK and PK and can vary element to element. The incompressibility condition,

div u = 0, is thus, relaxed, with Phs( t) = -eK Idiv uhP(t) at quadrature points t E K.

Whenever Ildiv uhPIlo.K exceeds a preset tolerance, the pressure is globally corrected. These

details are discussed more fully in the next subsection.

4.2 Pressure Approximations

We begin with a brief review of the concepts behind non-singular perturbations in the

continuity equation as a device for handling pressure approximations.

It is well known that a notorious difficulty in the numerical solution of the Navier-Stokes

equations is the treatment of the pressure approximation in a way that results in a stable

scheme. At the heart of this issue is the LBB-condition, originally established for the Stokes

problem by Ladyszhenskaya [481, which establishes that if the Stokes problem is to be well

posed, the bilinear form b: V x M -+ R of (2.3) must be such that a constant 0 > 0 exists

such that

sup b(v, q) > P llqll 0  V q E M (4.2)

A fairly large literature exists on ways to ensure the fulfillment of this condition for certain

discrete problems (for summaries, see Carey and Oden [49], Kikuchi and Oden [50], and

Brezzi and Fortin [51]).

Focusing on the Stokes problem (2.5) for simplicity, it is observed that the solution (u, p)

is a saddle point of the Lagrangian

L: VxM-* 1
L(v,q) = J(v) - b(v,q) (4.3)

J(v) = 1 a(v, v) - L(v)

A unique saddle point of L exists whenever the energy functional J(v) is coercive, convex,

and differentiable (with respect to v) for fixed q (which is always the case for the class of

problems considered here), when L(vo, q) is concave and differentiable with respect to q for

fixed v = vo (which also holds), and when the following coercivity condition holds for some

v = vo (see Oden [52, p. 81]):

lim L(vo, q) -- -oo (4.4)
jq1O-- 7
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To enforce this coercivity condition, and ensure a well-posed problem for evaluating the
pressure, one can perturb the Lagrangian by the addition of terms that guarantee that (4.4)

holds, e.g.,
L.(v,q) = L(v,q) + D.(v,q) (4.5)

where De(v,q) is designed so that L(., -) satisfies (4.4). Then there exists a sequence of

saddle points (ue, P) such that

L.(u,,q) < L,(u,,P) L.(v,P.) V (v,q) E V X M (4.6)

and one structures D(., so that (u,,P,) --+ (u,P) as 0 - 0, (u,P) being a solution of

(2.5).

For the Stokes problem, one of the most common forms of the perturbation term in (4.5)

is

D,(v,q) = - IIqII (4.7)

Then (4.4) holds for any E > 0 and the perturbed form of the Stokes problem is

a(u.,v) - b(v,P,) = L(v) V v E V (4.8)
(eP ,q) + b(u ,q) = 0 VqEM (

which is formally equivalent to an exterior penalty approximation of P,, since (4.8)2 yields

P, = -Cldiv u, (4.9)

With (4.8), the momentum equation becomes

a (u,, v) + e (div u,, div v) = L(v) V V E V (4.10)

In discrete approximations of (4.9), we use numerical quadrature rules for evaluating the
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integral of the penalty terms. For the master element K,

Ne

]gfgd ,z I(f,g) = iwf (I)g(te) (4.11)

where w, are the quadrature weights and are the quadrature points, and for affine-

equivalent elements (recall (3.15)), we have

I(f,g)= E IK(f,g); IK(f,g)=detTKI(f,g) (4.12)
KE2h

The space of discontinuous element pressures Ms(11) is defined by

Mhs(Q) = {qhS Mq O FK = 4 QS (K) I(qq)= IIqiI 2  }
,K =L EQ q(=jq ) (4.13)

Thus, the pressures are discontinuous polynomials of degree s in each variable, with s de-

termined by the quadrature order of I(., ). For an hp-approximation uh of velocities, the

discrete-penalty formulation becomes,

a hP, v) + e-I (div up, div v) = L(v) V v E V (4.14)

and the pressure approximation is given by

PLP E Qh(Q2 ); p'h o FK (ct) = -- 'div i4' (ce) (4.15)
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The discrete LBB condition for this type of approximation is of the form,

I (div vhP, q) 1100  q Xh~~

sup Ivhpq> hp qjo V q E Mh., A)(4.16)VhPEVvP\o jjVhpll,.O -

A study of LBB conditions of this type for high-order hp-finite element methods has
been conducted by Wu and Oden [53] for some special two-dimensional cases. The following
result suggests how a stable approximation of pressure can be obtained.

Let fQ denote a rectangular domain in R2 that is partitioned into a mesh of quadrilateral
elements K which are affine equivalent to a master element K = [-1, 1]2. Let the velocity
approximation of Q belong to the space,

Vhp(n) - hp E (CO(fl) 2 IVhpIK E (QP(Ifl)2} (4.17)

where QP(K) is the space of hierarchical polynomial shape functions of degree p in x, and
x2, and let the pressure approximation qhS belong to

Mhs(Q) = {qh" E L 2(Q) q hs K E Q(K)} (4.18)

Then the discrete LBB condition (4.15) is satisfied with fphp independent of h and p whenever

p> 2, s=p-r, r>2

Numerical experiments suggest that this result also holds for three-dimensional cases.

4.3 Pressure Corrections

A great deal of attention has been given to pressure-based schemes for treating the incom-
pressible Navier-Stokes equations in recent years. These families of methods originated in
the work of Chorin [54], were the basis of the Simple and Simpler finite difference algorithms
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of Patankar and Spalding [55] (see also [56]), and were studied in great detail within the
context of finite elements by Gresho (e.g., [57,58]); see also Ramaswamy, et al. [59).

The ideas are based on extensions of the Helmholtz theorem:

For any vector field u: - R , there exist scalar and vector potentials V and 4'
such that

u = Vo + curl 4

Since curl V7o = 0 and div curl 4' = 0, u can be decomposed into a vorticity-free field
(VVp E H-t ) plus a divergence-free field (curl ?P E H). More generally, if H denotes a
projection of V into H (recall (2.2)), a projection F : V --+ H' exists such that F = I - H
(see Temam [451).

Now suppose that during a numerical simulation, the approximate velocity field uhp

wanders outside the space H of divergence-free fields. We may then add to u hp a "correction"
whp E H-' so that

uhp + whp EH, or divuhp+div whp = O

But since whP E H', there exists a scalar potential W such that whp - Vp. Hence,

AV = -div uhp (4.19)

where A = V. V is the Laplacian. The scalar V is termed a pressure correction, since a check
with the projection F of the discretized momentum equations into H' will show that VV is
related to VP according to relations of the type, Vv - AtVP = O(At2 ), At being a time
step. To (4.19) must be appended boundary conditions, ap/On = a, where a = o(h, At) is
selected for consistency with (2.1) and the order of approximation used in its discretization
in space and time (set [581).

In the present work, we shall apply a pressure correction of the form (4.19) only when
the departure of uhp from H exceeds a preset tolerance eTOL. Thus, if

lldiv uhpjJ eTOL , KE

we set

-AP = At-ldiv u hp

and, then,

= ph +
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5 HIGH-ORDER, SEMI-IMPLICIT SOLVERS

The regularized Navier-Stokes equations can be written in the form,

DuDt = F(u)+ VP (5.1)

where
Du

= ut + u. Vu = the material time derivative of the velocity
Dt 

(5.2)

F(u) = f + 2vV . D(u) = diffusion vector

We shall outline several high-order splitting schemes. For a survey of splitting methods, see
Marchuk [601.

5.1 High-Order Method of Characteristics

The classical method of characteristics (though not actually a splitting scheme) can be
generalized to produce a remarkably effective solver. Recall that the motion of a material
fluid particle X is given by the map

x= X(X, t)

where x is the spatial position of X at time t and X is a smooth invertible function for every
t E [0, T]. The characteristics of (5.1) are determined by the trajectories,

d- =U 
(5.3)

and u can be written as a function of particles X and time t in a material (Lagrangian)
description of the motion:

Du Ois
u = u(X(X,t),7t) = fi(X,t); Du 

=
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Thus, over a time interval (nAt, (n + 1)At),

fin+I(X) = ii"(X) + [F (fi(X,s)) + VP(X,s)]ds
t n

x(X,tn+l) = x(X,tn) + n i(Xs)ds

where fin+ 1(X) = ii(X,tn+1 ) = u(x(X,tn+l),tn+l). The algorithm is thus divided into
three steps:

10. Determination of the Characteristics.

set

X0 = X , v ° = ii(X,tn+) = v 0 (X 0 ,O)

As = (t,+l -t)/N

dok = 1, N

Xk = x k-
- vk -1 (Xk-, (k - 1)As) As

Vk = fi (~X', tn+1 - kAs)

E u (a k, tn+1.... ) pO (tn+l - kAs)
j=1

end do

where the functions Cpj = cpj(t) are polynomial functions in t that interpolate u(x k, t) over
past time steps.

To further reduce the error from the above procedure, we may introduce the following

angle check in the loop:

Angle Check:

If cos -  I i11 < :, = toll, continue

else As = -As
2
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2'. Determination of fi,+

Fk = Fk (vk, t,+ - kAs)

N

inI~(X) = U (Z Ntn) + Z:wkF-
k=O

N

in h ,(X) - woF (iin+1(X)) = U (XN, tn) + 1: wkF;
k=1

3'. Pressure-Continuity Check

Pn+IK - pn+l (4.) VI(6,77)

pn+l (t) = -e-div u n+'1 (e)

fKdef 2div Un+1 2
Id U O,K

If iK ! 62 = to12 , go to 10,

else

pn+l 1K = pn+l + pn+l

IK Vp +,V~p dx= - JK div u"'+1W dx

VVE Mh°(K)
go to 3*

end

Here the functions W are the Q°(K) basis functions described earlier; other notations are self
explanatory.

5.2 Multi-Step Methods

Multi-step methods, such as the Adams-Bashforth scheme, have been employed by several
investigators concerned with spectral approximations of the Navier-Stokes equations (see,
e.g., Canuto, Hussani, Quarteroni, and Zang [61J, Koroczak and Patera [62J, or Ramaswamy,

Jue, and Akin [59]). A two-step scheme in this family of methods is indicated as follows:
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10. Explicit Step. An N-th order explicit Adams-Bashforth step is embodied in the
expression,

N-1

,°+l,) = u(X) + At Z P/F (U,-k) + 0 (,,t,+,)
k=O

where the Pk are given in the following array:

Order 1o /31 /32 /33--

1 1
2 3/2 -1/2
3 23/12 -16/12 5/12
4 55/24 -59/24 37/24 -9/24

etc.

2*. Implicit Correction. The N-th order Adams-Moulton is expressed by

N-1
S+l,) = un + At _ F (Un+l-k) + o (AtN+1)

k=O

with

Order j _o 7 /2 /3

2 1/2 1/2
3 5/12 8/12 -1/12
4 9/24 19/24 -5/24 1/24

The Adams-Bashforth/Adams-Moulton schemes can be used in a predictor-corrector algo-
rithm with

N-1

U* = Un + At /3EF (un-k) (predictor)
k=O

N-1

U-+1 = Ut + At 0F(u-) + At E 3&F (Un+,-k) (corrector)
k=1

5.3 Runge-Kutta Schemes

The classical explicit Runge-Kutta schemes provide another approach toward the develop-
ment of high-order flow solvers. In general, these advance the solution in time according
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to
N

uk+i = Fu + At aik
i=1

N

Z-ai = 1

i=I

k, =F (uf +AtZaiiki)

with 1 < m < i- 1 for explicit schemes, m = i for semi-implicit schemes, and i+ I < m < N

for fully implicit schemes. See Butcher [63] for full details and tables of the coefficients aii.

We compare results obtained with some of these schemes in Section 7.

6 ERROR ESTIMATION AND ADAPTIVITY

The hp-adaptive strategy must involve a running audit of the error in the approximate
velocity and pressure fields. Existing mathematical theories for a posteriori error estimation
primarily apply to simple elliptic, scalar boundary-value problems and few results exist for
error estimation of solutions to the Navier-Stokes equations. A study of error estimation
techniques for hp-finite element approximations of elliptic problems is given in [42]; some
extensions of these ideas to time-dependent problems are discussed in [63] and error residual
methods are adapted to calculations of compressible flow problems in [64J.

In this investigation, we extend the error residual methods of Ainsworth and Oden [65]
to incompressible Navier-Stokes equations by exploiting the particular structure of the ap-
proximations inherent in the splitting algorithms described in the preceding section.

6.1 A Posteriori Error Estimators

The (n + 1)st-step of a semi-explicit method of the type discussed in Section 5 requires the
solution of a linear elliptic system of the form,

u + x 
- 2AtV . vD (un + ') - At,--V (V . un+I)

(6.1)=Atfn+, + u"+

with, for example,
n+1 = n N)

for the method of characteristics. Setting

un+ I = u ; AD(u) = At (2vD(u) + e--1V - u)

f = Atfn+1 + Un+2,
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the problem reduces to the symmetric, linear, elliptic boundary-value problem,

-V.AD(u)+u = f in Q)

u = 0 on Fr (6.2)

n Au = g on 12

Here A is the fourth order tensor, A',kt = At( 2V6 it,jk + 2L"jkbit + e-lijbkt). The corre-
sponding bilinear and linear forms are

ii: V XV --+R . L: V --+

2i V)I )T(6.3)
,)=j(D(v)AD(u) + uv) dx K(U, V)(

KETh

!(v)=j!'VdX~j9Vd.S=ZELK(V)(64
2 ~KETh(64

Here iK(" , ") and LA(.) are the bilinear and linear forms defined on a partition Th of Q
(recall (2.6), (2.7)). We define the local and global energy norms by

IIUIIE = a(uu) IIUIIEK = a/K(t,,) (6.5)

Thus
E IIIE,K

K ETh

We wish to estimate the approximation error of e(z,t) = u(x,t) - uhP(X,t) at t -

(n + 1)At to within term of O(At2), in the energy norms (6.5).

We next introduce the following notations and conventions (Cf [651):

N
* The partition Th of l has N = N(h) elements K - siK, - = U{K E Th} = U NK

K=I
(thus "K" is used to indicate both a subdomain and an index of the subdomain)
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* FKL = 39KnflQL, 0 < K, L < N are sets consisting of a finite number p(K, L) of

segments such that

p(K,L)

FKL = U FMKL U EKL
M=I

2KL = isolated (nodal) points (Y2KLnrKL = o)

* = aflcKn , 9K = U--KL
L,M

" E = E (Th) =boundary segments of the partition Th
N

= U rKL
K,L=O
K>L

I<M<p(K,L)

N

E = segments lying interior to 2 = U ML
K,L=1
K>L

1<M<p(K,L)

+1 if K>L
SKL=-LK= -1 if K<L

* n(s) - O'KLnK(S) = 'LKnL(S) , S E FmL,

thus n is a unit normal pointing outward from the subdomain with largest index

K IL : rm -- am OM(,) + amK()=1
* ~ K '~L ~KL s±cLK()1

O<KL <N, 1 < M <p(K,L)

" Jumps and convex combinations:

Iv" nfM = OKL[VK • n K - OLK^IVL nL

(V n).IrmL = amYV nK- a 4ICYVL

(-IVK = trace of v E V(K) onto 49QK, [v. n] is the jump in v n across neighboring
subdomains, while (v • n), is a linear weighted average of v • n between neighboring

subdomains).
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The element residual functions are then defined by,

rlc(X) = (X) + (V AD (Uhp) _ Uhp) (X) , x~ E KJ 9 -n K . AD ( hP) sE roE lr 2  1 < M < p(K, 0)

RK(s) -I - z[[n. AD (Uhp)] , sEFr , 1 < K,L < N
L I1 < M < p(K,L)

J meas(K)-1 J rgdx + J RKds} if 9K F1a = 0
6K = A K(6.6)

0 if otherwise

Each finite element is now endowed with a complimentary energy given by the functional

GK(O) = -- (6A-lo dx- -7)

Theorem 6.1 (Cf [60]). Let e denote the approximation error

e = u- u hp  (6.8)

where u is the exact solution to (6.1) and uhp is its hp-finite element approximation. Then

IleI < -2 E GK(u') (6.9)
KETh

for all 0- E WK, where

WK = {oij(x) E (L2(K))n2 IV E (L2 (K))n ,

oj = oji , 1 < i,j < 3 , ijngj = RK,(s), (6.10)

on K \ 17}
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U

Defining,

EK(Or) = 1K or A-'o" dx
A0) = 12(6.11)

-- j() < IV- + r-II d

we see that

llell' < 2 q%(o') V Or E rJ WK (6.12)
KETh KETh

Thus, the functionals 77(K) provide a bound on the global error for any "pseudo stress" 0.
It remains only to construct an efficient way to calculate (or approximate) a suitable local
field o-.

One technique that leads to asymptotically exact estimates is as follows:

Let U E Vh'P+l(K) be such that

fK D(x)T AD(U)dx = u(K+6<.xdx

K = K (rK + 6 K) d

+ f RK" Xds + r g xds (6.13)

V X E Vh'p+l (K)

It can be shown that there exist a unique U satisfying this equation. Set

o'*= AD(U) (6.14)

Then it can be shown that A' (or*) < A 2.(o'), V a E WK, and that 9',(o") is, therefore,, an
acceptable error indicator. We choose

J7K fK 0. A-lodx + meas(K)6 K (6.15)
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6.2 Adaptive Strategy

The adaptive algorithm employed is briefly outlined is as follows:

1. Begin with an initial mesh, generally obtained after solving the Stokes problem with

one or two h-refinements and uniform p, or with p higher in regions where effects of
singularities are expected to be significant.

2. Solve the problem on the initial mesh.

3. Compute A77'¢ due to the increase of every unconstrained degree of freedom of element

K.

4. Choose the change in PK or hK that produced the maximum change in error

A? = max A77'K

and redistribute hK and PK accordingly.

5. Go to item 2.

Details of this procedure are given in [43].

7 NUMERICAL EXPERIMENTS

In this section, we present selected results of several numerical experiments designed to

test the methods and the general approach described earlier. These primarily concern stan-

dard model problems, such as the backstep channel problem and the driven cavity problem.

7.1 The Backstep Channel Problem in Two Dimensions

A standard benchmark problem is the so-called backstep channel problem depicted in Fig.
5. The inflow velocity is parabolic,

u2 = 0, U, = -- a2 -y2

and no-flow conditions are imposed at all other boundaries except the outflow boundary

xo = b + c, where we set ou(u(t), P(t)) • n = 0. The recirculation lengths L1, L2 shown

depend upon the Reynolds number, and data on the variation of L, and L2 with Re has
been obtained by several investigators using other schemes (see, in particular, Ghia, et a].
[641).
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Figure 5: Geometry and notation for the two-dimensional backstep channel problem.
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'Thc first results cited here focus on our comparisons of the schemes described in Section
5. No attempt was made to optimize or vectorize the coding in these calculations, and a
GMRES scheme was employed to solve the diffusion steps in all cases. The uniform mesh
of Q3/Q1 elements shown in Fig. 6, corresponding to around 1200 degrees of freedom, was
used.

Computed velocity profiles over a portion of the mesh are shown in Figs. 7 and 8. Figure
7 contains results obtained using a fourth-order Runge-Kutta (RK4) scheme. There we
see computed velocity fields at t = 2.00 secs. obtained using a time step At = 0.1 sec.
Figure 8 contains similar results for the same time step At but computed using a first-order
MOC (method of characteristics) technique. The computed velocity fields are essentially the
same, but were obtained by the MOC required only 40 percent of the CPU time of the RK4
technique.

Similar results for a Re = 600 are shown in Figs. 9-11. In Fig. 9, we see computed
velocities delivered by the RK4 scheme at t = 1.00 secs. corresponding to At = 0.1 sec. A
high-order (fourth-order) MOC scheme was also used to solve this problem and results are
shown in Fig. 10. This calculation required approximately 75 percent of the CPU time used
by the RK4 scheme. A fourth-order Adams-Bashforth scheme was also used to solve this
example, but it failed for At = 0.1 sec. and was stable for At < 0.05 sec. Results obtained
for this scheme at t = 0.50 sec. are shown in Fig. 11.

These calculations were repeated for Re = 100 and 1000, and a comparison of results is
given in Table 1 below. Variances in time steps shown in the table are due to the conditional
stability of .the explicit steps in the RK4 scheme and the fourth order Adams-Bashorth
scheme, which proved to be unstable at At = 0.05 sec. for Re = 1000. The method of
characteristics appears to be unconditionally stable and to be superior to the other high-
order schemes for these calculations. The relative efficiency of these schemes could, of course,
change with appropriate optimization of the coding. All calculations were run on a single
processor of the Alliant FX8 computer and are normalized with respect to the MOC for
Re = 100. Results obtained using multiple processors are underway and will be reported in
future work.

Table 1: Comparison of High-Order Schemes

Q3/Q' Elements 1200 degrees of freedom

Re 300 [ 600 

At CPU At CPU
RK4 0.1 2.43 0.1 2.44
Adams/B4 0.1 3.02 0.05 -
MOC4 0.1 1.00 0.1 1.04
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Figure 6: A uniform mesh of Q3/Q1 elements with 1202 degrees of freedom: a/b =2/7,

c/a = 1/24, Re = 300 and Re = 600.
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Figure 7: Velocity profiles: fourth-order Runge-Kutta scheme, Q3/Q1 elements, At 0.1,
t 2.0 sec, Re = 300.
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Figure 8: IVelocity profiles: methods of characteristics, Q3/Q', 'At 0-O1, t 2.00 sec,

Re = .300.
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Figure 9: Computed velocity fields at t =1.00 sec: RK4, At 0.1 sec, Re =600.
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Figure 10: Computed velocity fields at t = 1.00 sec, fourth-order MOC, At = 0.1 sec,
Re = 600.
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Figure 1I: Computed velocity field at t =0.50 sec: conditionally stable, fourth-order
Adams-Bashforth scheme with A~t = 0.05 sec, Re = 600.
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Q4/Q2 Elements 1756 degrees of freedom

Re 100 1000_

At CPU At CPU

RK4 0.05 6.60 0.01 6.15
Adams/B4 0.05 5.66 0.01 -
MOC4 0.1 1.00 0.1 2.57

Table 2 contains computed values of the reattachment length L, and L2 of Fig. 5 com-
puted using a fixed grid of Q3/Q1 elements for various Reynolds numbers for a 0.51485
compared with those obtained by Ghia, et al. [64] using a 12,870 degrees of freedom finite
difference calculation. These results correspond to solutions at t = 100.0 sec. and were
obtained using only 1394 degrees of freedom.

Table 2: Reattachment Length Comparisons

Re L, I L2

Present Ref. [64] Present Ref. [64]
150 3.23 3.38 - -

300 4.96 4.95 4.05 3.75
507 6.08 6.25 4.70 4.75
600 6.39 6.50 4.97 5.00

7.2 A Backstep Channel in Three Dimensions

Some preliminary results on a three-dimensional backstep channel calculation are displayed
in Fig. 12 which contains ul-velocity profiles for the Stokes problem, the solution of which
is used as the initial conditions for integrating the Navier-Stokes equations. Here a uniform
mesh of Q2/Q' elements is used (it being understood that Qr corresponds to tensor products
of polynomials of degree r on a hexahedral element). Solutions for Re = 300, 4U elements,
At = 0.1 sec. at t = 5.0 sec. are shown. A more detailed analysis of this problem is underway
and is to be discussed in a future report.

7.3 Flow Around a Square Body, Re = 250

Figure 13 shows an initial hp mesh of cubic and quintic elements surround a square obstacle
in a rectangular flow channel. A parabolic inflow velocity is prescribed, the intensity of which
corresponds to a Reynolds number of 250 relative to the side length of the square. The finite
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Figure 12: Computed velocity field in a three-dimensional backstep channel: Re =300,

t = 5.0 sec., MOCi.
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element model contains only 1656 degrees of freedom. A second-order semi-implicit Runge-

Kutta scheme was used to integrate the equations of motion, with penalty parameter E set

uniformly to 10'.

Computed velocity vectors and contours of the longitudinal coviponent of velocity are
shown in Fig. 14 at t = 230 sec. Contours of the u 2-velocity at this time are shown in Fig.

15.

7.4 Two-Dimensional Driven Cavity, Re = 5000

The classical driven cavity problem is next considered as a standard benchmark test. Two
cases are presented. In the first case, only h-refinement is used with p = -1 uniformly over
the square grid. The mesh is shown in Fig. 16, has 2393 degrees of freedom. The ul-velocity

of the "lid" is prescribed to be uniform and is set to correspond to a Reynolds number of
5000. The adaptive algorithm automatically refines the mesh near the corners to resolve the

corner singularities.

In this test, the method of characteristics is used to integrate the solution to an apparent
steady-state solution. Computed ul = u and v, = v velocity contours are shown in Fig.
17. Computed pressure contours are shown in Fig. 18 compared with those of Gresho and

Chan [58], which were obtained using a fine graded mesh of bilinear elements. It is observed
that excellent agreement is achieved. Notice that the plotting routine has detected the slight

discontinuities in the pressure field, indicated by small but stable and non-oscillatory jumps
at boundaries of the larger elements.

A second case was run using the nonuniform hp mesh shown in Fig. 19 which involved
only 1442 degrees of freedom. In this case, the adaptive procedure produced the mesh shown
with Q5/Q 3, Q4/Q 2, and Q3/Q1 elements. Again, the MOCI scheme was used for Re = 5000.
Results esser-tially coincided with those in Figs. 17 and 18. To exaggerated discontinuities
in the pressure, a coarser contour gridding was used and the resulting pressure contours are

shown in Fig. 20.

7.5 Three-Dimensional Driven Cavity

A three-dimensional version of the driven cavity problem was also tested and results are

shown in Fig. 21.

A relatively crude mesh of 22 cubic elements (Q3 /Q') %'th one level of h-refinement is
shown in Fig. 21. This corresponded to a model with only 2244 degrees of freedom. A
uniform velocity u2 = 1.0 is presented over the lid face (x = 0) and the RK4 scheme is used
to integrate the Navier-Stokes equations. In this case, Re = 100 and At = 0.1 sec. The
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Figure 13: hp mesh for simulation of flow past a square obstacle; Re 250.
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Velocity vector magnitudes.

PROJECT: sq2

-MIN= 0. 106E- I
MAX=1.4308042

PROJECT: sq2 FIRST COMPONENT

.0.25 0.125 0.5 1 1.375

Contours of u component of the velocity.

Figure 14: Computed velocity field and contours of ul-velocity at t 230 sec., using
Runge-lKutta method.
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Figure 15: Computed U2 -velocitY contours at t 230 sec., Re = 250, Runge-Kutta method.
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u velocity contours

v velocity contours

Figure 17: Computed u, = u and v2 = v velocity contours for Re = 5000, method of
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Figrure 18: Computed pressure contours compared with those of Gresho and Chan [58].
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computed profiles at t = 10.0 At are shown superimposed on the mesh. A detailed discussion
of results obtained on this and other three-dimensional benchmark problems is forthcoming.
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